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SUMMARY

For sludge washing to be conducted in existing Hanford carbon steel
tanks, there must be an assurance that the tanks will be safe from failure by
pitting, stress-corrosion cracking or other failure processes when the
corrosion inhibitors present in the waste are diluted during the sludge
washing operation. Testing has been conducted previously to define safe
operating regimes in concentrated waste environments and moderately dilute
waste environments. Due to identification of unsafe operating regimes for
moderately dilute waste environments, testing was conducted in more dilute
environments to adequately capture the range of possible chemistries during
sTudge washing operations. Additionally, a small scoping study was performed
to identify the corrosion effects of high levels of chloride in the waste
environments.

Six month exposure coupon tests, slow strain rate tests, and
potentiodyuamic scans have been completed on a statistically designed test
matrix of twenty-four tests. Stress-corrosion cracking was not found for the
specimens in the static tests or the slow strain rate tests. Pitting and
crevice corrosion was found for many of the solutions, but primarily in the
vapor phase. Waterline attack at the vapor space/solution interface was
common for the range of solutions tested. Gross general attack was found for
the specimens exposed to the vapor space of the high chloride solutions.
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PRETREATMENT APPLIED ENGINEERING,
CORROSION ASSESSMENT
FOR TANK MATERIALS:
1995 FINAL REPORT

1.0 INTRODUCTION

Pretreatment of the radioactive tank waste in storage at the Hanford
site will be used to minimize the volume of the high-level waste (HLW), and
thereby reduce the attendant costs of disposal. One step in the pretreatment
of HLW is sludge washing, which may be performed in the existing double-shel}
carbon steel tanks. Sludge washing will include pumping the supernatant
liquid out of the tank, adding water to the sludge volume, mixing the
contents, settling the contents, and then pumping off the agueous phase.
Multiple washing steps are planned in order to remove the soluble
constituents.

Currently, the concentrated wastes are maintained to compositional
specifications (Ondrejcin 1978, Kirch 1984) that prevent stress corrosion
cracking (SCC). There is a major concern that the washing operations using
raw water (without inhibitors) could jeopardize the tank integrity by SCC and
pitting attack, because the corrosion-inhibiting effect of hydroxide and
nitrite ions would be lost through excessive dilution. Ideally, the wash
water should contain sufficient Tevels of corrosion inhibitor to minimize
pitting, cracking, or uniform attack and at the same time add very little
additional burden to the amount of dissolved solids that must be processed.

Corrosion testing began at the Pacific Northwest National Laboratory
(PNNL) in FY 94 to provide experimental data to guide in adding the minimum
amount of inhibitor chemicals to the wash water, consistent with avoiding tank
failures by SCC, pitting, and uniform attack (Danielson and Bunnell 1994).
Stress-corrosion cracking and potentially serious pitting in the vapor phase
were observed in specimens exposed to two of the sixteen statistically
designed solution environments investigated in these FY 94 studies. Based on
these test results, testing in FY 95 focused on the following: (1) better
definition of prototypical waste solution environments, (2) better definition
of the compositional regime that separates the corrosive chemical environments
from the benign chemical environments, and (3) examination of the effects of
chloride ion which was not evaluated in FY 94. The FY 95 solution
compositions were selected by coordination with Westinghouse Hanford Company
(WHC) process engineers and a PNNL statistician. Corrosion test results are
reported for the FY 95 electrochemical tests, slow strain rate tests, and
coupon tests.
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2.0  TEST APPROACH

Three types of tests at 93+3°C (200°F) were carried out: slow strain
rate tests to evaluate SCC propensity: static tests with totaliy-immersed and
half-immersed U-bends and plain coupon specimens to evaluate the SCC, pitting,
crevice, and uniform corrosion attack behavior; and electrochemical tests.
Crevice corrosion was evaluated by using serrated polytetrafluroethylene
washers under the bolts loading the U-bends. Test specimens were A-515 steel
that were given a twenty-four hour heat treatment at 593°C (1100°F). The
tanks were originally given a one hour heat treatment, but the longer heat
treatment given to the specimens increases their propensity for SCC (Sarafian
1975), resulting in a more conservative test condition. The chemical and
physical properties (before the heat treatment) of the A-515 steel are shown
in Tables 1 and 2 for the FY 94 and FY 95 materials. The supplier was unable
to duplicate the same heat of A515 for the FY 95 testing.

A-515 steels were studied because a good possibility exists that the
earliest washed tanks (constructed of A-515) will be used as the long-term
sludge washing containers for the other tanks. Consequently, the A-515 tanks
will have the longest exposure to the washed environments and the greatest
chance for some slow failure process to occur. A-537 carbon steel was used in
later-built tanks. It is hypothesized that the corrosion behavior of A-515
can be used as an accurate predictor for that of A-537.

Nitrate, nitrite, and free hydroxide are the three independent variables
that have the most effect on the corrosion response. A statistical
experimental design was used to define the test solution compositions because
of the expected complexity of the interaction among these variables and the
wide variety in the tank solution compositions. The range of each variable is
shown below:

Nitrate: 0.025 to 1.00 M
Nitrite: 0.01 to 0.393 M
Hydroxide: 0.01 to 0.389 M

Chloride: <0.001 to 0.500 M

Additienal minor waste components were maintained at a Tow level in each
solution to better simulate actual waste solutions:

Sodium carbonate: 0.01 M
Sodium sulfate: 0.01 M
Sodium phosphate: 0.001 M
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Table 1. A-515 Chemical Properties.

C | Cr l Cu J Mn | Mo I Ni I P l S I Si l Other
FY 94 Specimen Material:
0.21} 0.20 | 0.25{ 0.54 | 0.07 | 0.24 | 0.02 | 0.01 | 0.22 | V 0.003
3 3 Cb 0.001
FY 95 Specimen Material:
0.24 ( 0.11 | 0.28 ( 0.51 { 0.05| 0.11 | 0.00{ 0.01 | 0.18 v
8 5 0.001
Cb
0.002
Table 2. A-515 Physical Properties.
Alloy Heat Tensile, Yield, Elong, UNS Supplier
MPa MPa %
FY 94 Specimen Material:
A515, Gr J567 551 405 23 K02401 ‘ Metal
60 Samples
FY 95 Specimen Material:
A515, Gr K604 525 341 ’ 23 ’ K02401 | Metal
60 : Samples

The composition of the 24 statistically designed test solutions is shown in
Tables 3 and 4 (solutions 12 and 20, as well as 7 and 19, are identical for
the statistical purpose of measuring the standard error). Chloride was not
added for the 'low' chloride solutions represented in Table 3, because
chloride is an impurity in sodium hydroxide; so some chloride will be present
in every solution. The chloride concentrations for the ]ow chloride solutions
varied from <5 mg/L to 30 mg/L for the range of sodium hydroxide in the test
solutions.  The high chloride solutions, shown in Table 4, containing 0.5 M
chloride, were used to perform a scoping test on the effects of chloride on
the corrosion susceptibility of the A-515 steel. The solution compositions
are more clearly shown in the three-dimensional plots of Figures 1 and 2.
Figure 1 shows only the 1995 test matrix while Figure 2 shows the integrated
test matrix containing the test concentrations from both the 1994 and 1995
test matrices.
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Table 3. Test Solutions, Constrained Test Design for Studying the Effects of

Nitrate, Nitrite, and Hydroxide in Dilute Waste Environments.

Solution Nitrite,Ag Nitrate, E Hydroxidgigg___
1 0.03 0.10 0.03
2 0.01 0.10 0.03
3 0.10 1.00 1.00
4 0.30 1.00 0.10
5 0.03 0.30 0.03
6 0.03 0.10 0.01
7 0.01 0.10 0.10
8 0.30 1.00 0.30
9 0.10 0.30 0.03
10 0.01 0.10 0.01
11 0.10 0.10 0.01
12 0.10 1.00 0.10
13 0.30 0.30 0.03
14 0.10 1.00 0.30
15 0.03 0.30 0.30
16 0.03 0.30 0.10
17 0.10 0.30 0.30
18 0.10 0.30 0.10
19 0.01 0.10 0.10
20 0.10 1.00 0.10




WHC-SD~-WM-TI-765, Rev 0

Table 4. Test Solutions, One-Half Fractional Factorial Test Design for
Studying the Effect of Chloride in Dilute Waste Environments.

Solution Nitrite, M Nitrate, M Hydroxide, M Chloride,
M
21 0.025 0.025 0.389 0.500
22 0.025 0.393 0.026 0.500
23 0.393 0.025 0.026 0.500
24 0.393 0.393 0.389 0.500
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1995 Test Matrix
Corrosion Assessment for Sludge Washing

[J o.5MCr tests

0.01
Nitrite  0.10

Nitrate

0.01

Figure 1. 1995 Test Matrix for Sludge Washing Corrosion Assessment.
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Integrated Test Matrix: 1994 and 1995

1.00

@ 1994 tests
© SCC(1994)
® 1995 tests
[ esMcr tests
R= Present in

1994 and 1995
test matrices

0.10

0.01

Figure 2. Integrated Test Matrix:

~0.01

Nitrate

1994 and 1995 Sludge Washing Corrosion
Assessment.
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3.0 EXPERIMENTAL DESIGN AND SETUP

SCC propensity was evaluated from slow strain rate tests in each of the
24 solutions by time to failure, percent elongation, reduction in tensile
strength, reduction of area, and fractographic indications of brittie
fracture. A slow strain rate apparatus with a nickel-base alloy vessel was
used as schematically shown in Figure 3. Care was taken to electrically
isolate the A-515 steel specimens from the test machine to eliminate galvanic
effects with the nickel-base alloy. The dogbone-shaped specimens had a gage
width and thickness of 0.635 cm (0.25 inches) with a gage length of 2.54 cm
(1.0 inches). The slow strain rate tests were carried out at a strain rate of
1.3E-6/sec, the same rate as Ondrejcin (1984) used in his Savannah River
Laboratory study on the cracking of carbon steels in concentrated simulated
waste solutions. The only exception to this strain rate was the one test
performed in solution 12, at a strain rate of 3.25E-7/sec. This test was
performed to investigate the cause of the discrepancy between results from the
FY 94 testing and current FY 95 test results. A test would typically last
three days. Air was continually sparged through the solution, which was
maintained at 93 #3°C. No welded specimens were evaluated.

Pitting propensity was evaluated in each test solution using the
potentiodynamic method to determine the pitting and protection potential.
These tests involve polarizing the specimen with a potentiostat according to
American Society for Testing Materials (ASTM) standards G-3 and G-5 at a scan
rate of 0.2 mV/s. The test set-up is shown schematically in Figure 4.
Potentials were measured relative to a Ag, AgCl reference electrode (4.0 m KC1
electrolyte) at the 93 3°C (200°F) solution temperature. The electrochemical
tests reveal pitting propensity by determining the existence and value of an
electrochemical pitting potential (potential at which pitting starts) and
protection potential (potential at which pits stop growing). ’

Additionally, there were 24 static solution tests containing A-515
coupons.  Tests were performed in two-Titer polypropylene bottles containing
three totally immersed U-bends and three totally immersed flat, uniform
corrosion specimens. Three U-bends and three flat specimens were also mounted
at the solution/vapor interface in each bottle. Each U-bend (shown
schematically in Figure 5) at the solution/vapor interface was positioned with
the maximum stressed region at the interface. Polytetrafluoroethylene crevice
washers were used under the stressing bolts for all the U-bends to serve as a
crevice corrosion test. The test bottles were maintained at 93+3°C in three
air ovens (eight bottles/oven). Each bottle was sparged with carbon dioxide-
free air at 1.3 L/day to maintain the oxygen concentration (the carbon dioxide
was scavenged with Ascarite). An air condenser was fitted to each of the 24
containers. Deionized water was added to each container as needed to
compensate for evaporation losses.

The testing program was conducted according to the Tank Waste
Remediation System Test Plan, TWRS-95-6.2, Revision 1.
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Slow Strain Rate Test System

Slow-Strain

0~ /Apparnus

LVDT:

»

L]
: S
Q. 4 T~Load Cell
Solution Inlet

=3 Solution Outlet

Support Rods
Pull Rods and

levi
Specimen Clevis

Autoclave
Heater

Autoclave

Figure 3. Schematic of the Slow-strain-rate Test Apparatus.



WHC-SD-WM-TI-765, Rev 0

— Reference Electrode
Counter Electrode

Working Electrode

Computer with
Potentiostat
Card

Thermometer ”

Solution Bath

Heater

Figure 4. Schematic Showing Test Set-up for the Potentiodynamic Polarization
Tests.
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SCC Cracks Appear Hers

Inspect ARl
Surfaces for
Pitting

B

53080843

naaann
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Teflon Crevice Washer

Figure 5. Configuﬁation of the U-bend Specimen Used for Static Corrosion
Testing.
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4.0 EXPERIMENTAL RESULTS

4.1 SCC TESTING BY SLOW STRAIN RATE

Ondrejcin (1984) used the slow strain rate method to explore the SCC
behavior of carbon steels in nuclear waste environments. His data was used to
define the safe/unsafe compositional operating regime for carbon steel waste
tanks. Ondrejcin's test criterion for susceptibility to SCC was an elongation
< 13%. SCC was intergranular in the slow strain rate tests. Table 5 shows
the slow strain rate data in each of the 24 solutions and the air test for
comparison. The elongation values were calculated from the load/displacement
data. None of this elongation data meets the Ondrejcin (1984) criterion for
susceptibility to SCC. In general, the elongation values were large, close to
the value for the air test, implying that there was no SCC taking place in any
of these test solutions. The Towest elongation value using the FY 95 test
specimens was 17.4% in solution 12. Solution 20 was a replicate of solution
12, and the elongation value in that solution was 18.6%. Solutions 12 and 20
were identical to a solution (0.10 M nitrite, 1.00 M nitrate, and 0.10 M
hydroxide) used in the FY 94 slow strain rate test that clearly showed SCC by
the Ondrejcin criterion (11.4% elongation). In order to investigate this
discrepancy in elongation values between the FY 94 and FY 95 testing, an
archival specimen from the FY 94 tests was tested in solution 12 at the usual
strain rate of 1.3E-6/sec. This time the elongation value for the FY 94 test
specimen was 17.0%, showing good agreement with the 17.4% elongation value
found for the FY 95 specimen tested in solution 12. In order to ascertain
whether the difference in elongation was due to the strain rate, a test was
performed in solution 12 with a FY 95 test specimen at one-fourth the strain
rate (3.25E-7/sec) normally used for the testing. The elongation from the
test performed with the reduced strain rate was 15.2%, a reduction in
elongation but still above the Ondrejcin criterion for SCC. Carbon steel is
not known to be strain rate sensitive, so the change in elongation would not
be attributed to mechanical effects. The difference in elongation would
suggest that additional time in the environment due to the reduced strain rate
would lead to enhanced degradation in mechanical properties. The differences
between the FY 94 and 95 SCC results raise a serious question about the
usefulness of the slow strain rate test method for evaluating the propensity
for SCC.

12
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Table 5. Slow Strain Rate Data.

Solution Ultimate Load, Elongation, % Relative to air Reduction in Relative to air, %
kN Elongation, % Area, % Reduction in
Air 24.9 20.8 100 34.8 100
1 25.1 18.2 77 28.2 81
2 23.6 21.8 92 35.6 102
3 24.6 22.7 105 26.1 75
4 22.2 19.2 101 27.9 80
5 24.9 22.2 119 35.1 101
6 24.9 22.7 121 28.6 82
7 23.7 24.0 108 38.2 110
8 25.4 24.5 104 31.8 91
9 22.9 22.5 101 32.2 93
10 26.2 23.5 95 30.8 89
11 22.8 21.7 97 35.9 103
12 24.5 17.4 93 18.5 53
13 21.4 21.9 104 35.9 103
14 24.8 21.0 95 33.2 95
15 23.5 22.6 99 33.1 95
16 23.6 22.8 99 30.7 88
17 21.2 21.2 112 29.3 84
18 20.9 22.8 111 30.8 89
19 22.4 20.9 97 35.9 103
20 22.6 18.6 S0 20.7 59
21 21.3 21.0 112 42.7 123
22 24.2 20.1 90 24.8 7]
23 24.8 22.0 109 34.1 98
24 23.9 20.8 119 28.8 83
12% 20.1 17.0 83 10.4 30
124+ 23.3 15.2 11 15.5 43

*  Test performed with FY 94 specimen in solution 12

** Test performed with a FY 95 specimen at a strain rate of 3.25E-7/sec

13




WHC-SD-WM-TI-765, Rev 0

SEM photographs of the fracture surfaces at magnifications of 12X and
100X of the slow strain rate specimens are shown in Appendix A. A classic
intergranular fracture appearance is not apparent for any of the specimens
tested. The fracture surface appearance is not always consistent with
complete ductile tearing, however. For example, there is a quasi-cleavage
appearance to the fracture surface of the specimen tested a slower strain rate
in solution 12, shown in Figure A.27b. Some specimens exhibited a reddish-
brown corrosion product on the interior of the fracture surface that was not
evident on the edges of the fracture surface. It is hypothesized that during
the testing a small amount of the solution had siphoned into the interior of
the fracture surface through a small crack in the gage section (implying that
a crack opened early in the testing), leading to a fracture appearance as
shown in Figure A.lla. Additionally, the FY 95 and FY 94 specimens tested in
solution 20 (solution 12), including the specimen tested at the lower strain
rate, showed evidence of secondary cracking readily observable at a
magnification of 10X. This secondary cracking can be seen in the gage section
shown in Figures A.7a, A.9a, A.10a, A.15a, A.2la, A.24a, and A.26a. All
except for Figure A.10a represent fracture surfaces of specimens tested in Tow
nitrite/nitrate ratio solutions or the presence of high chloride in the
solution. Sludge-washing compositions that lead to secondary cracking are
identified in the 1995 Test Matrix, Figure 6. The presence of secondary
cracking perpendicular to the applied stress during slow strain rate tests has
been used as a criteria for SCC in some environments. This presents a dilemma
in how to adequately characterize SCC for slow strain rate tests.

4.2  POTENTIODYNAMIC PITTING TESTING

The current-potential data from the pitting experiments are presented in
Appendix B, Figures B.1 through B.24, for each of the twenty-four solutions.
The solution composition, open circuit potential (EcmT), pitting potential
(Epn)’ and protection potential (Eprt) are reported 1n Table 6. Briefly, a
potentiodynamic pitting test is conducted in the following manner:

Starting at the open circuit corrosion potential, the electrochemical
potential on the metal specimen is increased in the anodic direction at
a constant rate (0.2 mV/s). The potential at the abrupt current
increase is known as the pitting potential. In the case of the present
tests, the potential scan is reversed at 1.0 V anodic to the open
circuit potential, and the voltage is returned to the open circuit value
at a rate of 0.2mV/s. When a metal starts to pit, the current increases
abruptly, giving a characteristic signature. Once pits initiate and
grow, they tend to persist so that the current remains high, causing the
formation of a current hysteresis Toop. During the reverse scan, the
point at which the current decreases and becomes equal or less than the
forward scan current is called the protection potential because the
growth of the propagating pits is halted. The protection potential is
thought to be the lowest potential that permits pitting to initiate;
consequently, it has the greatest relevance for predicting pitting
propensity for actual service. Figure B.19 illustrates how the pitting
and protection potential are defined. At the low current ranges
(sO.IpA/cmz), the Togarithmic current amplifier in the potentiosat
becomes noisy and creates the current spikes observed in the current-
potential data. ’
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On the basis of E,. ., six solutions were found to be capable of leading
to pit initiation and propagation, as shown in Table 6. However, these
solutions are unlikely to cause pitting under actual field conditions because
the E ., was at Teast 0.5 V anodic (more positive) than the open circuit
poten%ia]. It would be unlikely that some condition in the tanks would ever
result in the electrochemical potential of the tank wall becoming polarized
into that regime.

The results from the static tests will be used to confirm the
electrochemical results, but this data suggests that the tank waste can be
diluted without generating pitting in the immersed tank steel. The other 18
solutions either appear benign to this carbon steel for pitting, or are
susceptible to preferential general attack as the potential was increased, as
in the case of the four high chloride solutions. Curiously, a small amount
of crevice corrosion was observed in almost all cases underneath the
polytetrafiuorethylene gasket used to protect the electrical contact of the
test electrodes.

15
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Table 6. Pitting Experimental Data.

Solutio Nitrite, Nitrate, Hydroxide, M Eﬂ&i’ 5&" Ema£5=
1 0.03 0.10 0.03 -0.018 NF NF
2 0.01 0.10 0.03 -0.032 NF NF
3 0.10 1.00 1.00 -0.095 | +0.58 | +0.53
4 0.30 1.00 0.10 -0.025 NF NF
5 0.03 0.30 0.03 -0.044 NF NE
6 0.03 0.10 0.01 -0.093 NF NF
7 0.01 0.10 0.10 -0.028 NF NF
8 0.30 1.00 0.30 -0.039 | +0.57 | +0.36
9 0.10 0.30 0.03 -0.018 NF NF
10 0.01 0.10 0.01 -0.054 NF NF
11 0.10 0.10 0.01 -0.022 NF NF
12 0.10 1.00 0.10 -0.109 NF NF
13 0.30 0.30 0.03 -0.038 NF NF
14 0.10 1.00 0.30 -0.092 NF NE
15 0.03 0.30 0.30 -0.040 | +0.68 | +0.58
16 0.03 0.30 0.10 -0.030| +0.74 | +0.71
17 0.10 0.30 0.30 <0.041 | +0.66 | +0.54
18 0.10 0.30 0.10 -0.110 NF NF
19 0.01 0.10 0.10 =0.049 | +0.52 | +0.34
20 0.10 1.00 0.10 -0.038 NF - NF
21* 0.025 0.025 0.389 -0.292 NF NF
22* 0.025 0.393 0.026 -0.121 NF NF
23* 0.393 0.025 0.026 -0.039 NF NF
24% 0.393 0.393 0,389 -0.118 NE NF__|

NF = Not Found
* These solutions also contain 0.5 M Chloride
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4.3  STATIC TESTS

The static tests were started in March 1995 and terminated in September
1995 after a six month exposure. The specimens were then cleaned, weighed,
and the data analyzed. The results are presented in Appendices C, D, £, and

Photographs shown in Appendix C were taken of representative specimens
from each test solution prior to cleaning. The U-bends and coupons from
solutions 1, 9, 11, 13, and 18 exhibited shiny, post-test surfaces in the
immersed phase, similar to the pre-test condition of the surface. One
solution, solution 11, exhibited a shiny post-test surface in the vapor phase.

Specimens exhibiting this surface condition also had the lowest average
corrosion rates, as shown in the weight loss data of Appendix D. Specimens in
solutions 1 and 13 exhibited a very thin, blue film in the post-test condition
prior to cleaning. The composition of the film was not identified, but
appears to be a thin, protective film easily removed with CP-9 (10% HC1 with
formaldehyde as the inhibitor) cleaning solution. Except for specimens
immersed in solution 8 and the specimens in the high chloride solutions, the
average uniform corrosion rate was highest for the solutions that had a 10:1
ratio of nitrate to nitrite. The specimens in the solutions that had a 10:1
ratio of nitrate to hydroxide and a 3.3:1 to 1:1 ratio of nitrate to nitrite
had the Towest average corrosion rates measured.

The specimens were analyzed and photographed after cleaning in CP-9.
Photographs of representative specimens, shown in Appendix E, were added as a
visual aid to the interpretation. Measured values for the pitting density,
size, and maximum depth, as well as the maximum depth of the crevice attack
and waterline attack are listed in tabular form in Appendix F. Weight loss
coupons that were immersed in solutions 2, 5, 6, 10, and 22 are shown in
Figures E.1, E.3, E.5, E.9, and E.12 because they showed unusual amounts of
attack. For example, pronounced crevice attack is visible around the bolt
hole in the specimens subjected to solutions 2, 5, 6, 10, and 22. Weight
Joss specimens from the air/solution interface region from solutions 2, 5, 6,
7, and 10 are shown in Figures E.2, E.4, E.6, E.8, and E.10. These specimens
exhibit either moderate pitting or a moderate to heavy amount of waterline
attack, or a combination of the two. For comparison, a weight Toss specimen
immersed in solution 7 with a fairly pristine surface appearance is shown in
Figure E.7.  This specimen only exhibited 1ight amounts of pitting and
crevice attack, and is included for a visual reference point with respect to
the specimens that exhibit moderate to heavy attack.

Photographs in Figures E.11 to E.18 were taken of representative
specimens exposed to the high chloride solutions. Figure E.11 contains a
photograph of a weight Toss specimen that was immersed in solution 21 which
exhibits a pristine appearance, and was included as a visual reference point.
A photograph of a totally immersed weight loss specimen from solution 22 was
included in Figure E.12 to show the extent of pitting in the high chloride
solution. The pitting in solution 22 was far more extensive, both in area
covered and in depth, than for solutions 21, 23, and 24. A1l of the
air/solution interface region specimens (weight loss and U-bend specimens)
exhibited catastrophic Tevels of attack in the vapor phase region at and above
the waterline. This can be very clearly seen in Figures E.13, E.14, E.16,
E.17, and E.18. The specimen shown in Figure E.13 was accidentally dropped
during the cleaning process, and a large chunk of brittle material broke away.
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It appears that the corrosion process converted that entire region of metal to
oxide. It is interesting to note the vast difference in appearance between
totally immersed U-bend specimens, as shown in Figure E.15, and those exposed
to the air/solution interface, as shown in Figure E.16. The totally immersed
specimen exhibited light amounts of pitting and crevice corrosion, whereas the
partially immersed specimen exhibited massive attack at and above the
waterline. The attack appears to be focused on the "wicking region" in the
vapor phase where the Tiquid phase is transported upwards by wetting the metal
and oxide surface but at the same time is being diluted by downwards movement
of condensation.

A tabular summary of the coupon tests observations was combined with the
secondary cracking observations (from the slow strain rate tests) in Table 7.
Also included is the pH measured for each solution at the conclusion of the
static tests. The test solution pH values ranged from 11.52 for solution 11,
one of the low hydroxide solutions, to 13.13 for solution 3, which was the
only solution with 1.0 M hydroxide. Secondary cracking was observed in slow
strain rate specimens tested in solutions 6, 8, 9, 12, 14, 20, and 23 (the
specimen in solution 12 was a FY 94 test specimen, but solutions 12 and 20 are
replicate solutions). Pitting was described in the table as 1ight, moderate,
or heavg, which corresponded to the pit density on_the specimen (Light =
2.5E3/m° - 1E4/m°, Moderate = 5E4/m?, Heavy = 1E5/m?). Crevice attack was, in
a similar manner, described in the table as Tight, moderate, or heavy
corresponding to the crevice attack area around the bolt hole. It was
difficult to identify and measure the contributions to the massive attack on
the specimens attributable to pitting and crevice corrosion, as the waterline
attack had covered a large area of the specimen. Consequently, the pitting
and crevice attack were not described, as above, for chloride-containing
solutions 21 through 24 in the table, and the letters "Gr" were substituted to
describe the gross general attack found on the specimens. Heavy pitting and
crevice attack were noted for the immersed specimens in solution 22, which was
a high chloride solution that contained a high concentration ratio of nitrate
to nitrite as well as a high concentration ratio of nitrate to hydroxide.

The other high chloride solutions contained levels of nitrite and hydroxide
comparable to or higher than the nitrate concentration, and Tight pitting and
crevice attack were observed for specimens immersed in these solutions.

A moderate amount of pitting and heavy crevice attack was observed for
specimens immersed in solution 6. Additionally, specimens immersed in
solutions 1, 2, 5, and 10 also exhibited heavy crevice attack. These
solutions all have nitrate concentration levels between 0.1 to 0.3 M, and
nitrite and hydroxide concentration levels between 0.01 to 0.03 M. Specimens
immersed in the rest of the solutions exhibited only 1ight amounts of pitting
and crevice attack, or none at all. The pit density increased moderately for
the specimens exposed to the vapor phase of solutions 7, 10, and 17, and
remained at a moderate amount for the specimens exposed to the vapor phase of
solution 6. Crevice attack was moderate for specimens exposed to the vapor
phase of solutions 2, 5, 7, and 12. Waterline attack was heavy for the
specimens exposed to solutions 5 and 10, and moderate for the specimens
exposed to solutions 1, 2, 6, and 12. With the exception of solutions 7, 12,
and 17, the solutions again all have nitrate concentration Tevels between 0.1
to 0.3 M, and nitrite and hydroxide concentration levels between 0.01 to 0.03
M. Specimens exposed to the vapor phase in the rest of the solutions
exhibited only light amounts of pitting and crevice attack, or none at all.
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The maximum depth of pitting, crevice attack, and waterline attack is
shown in bar charts for the twenty-four solutions in Figures 7 through 11.
Sludge-washing compositions that lead to pitting, crevice, or waterline attack
depth > 0.05 mm were identified in the 1995 Test Matrix, Figure 12. Pitting
depths, in general, were <0.5 mm for specimens tested in both the immersed
condition as well as the vapor phase of most of the solutions. This was not
true for solutions 1, 5, 6, and 10, as well as for the high chloride
solutions. The depth of the crevice attack was greater than for the pits in
all solutions where both were present. The occurrence and density of pitting
was greater for specimens in the vapor phase as compared to the immersed
specimens, but the pits were often very shallow. Waterline attack was
present on the specimens in the vapor phase for most of the solutions, with
depths comparable to the depths of the crevice attack. A comparison of the
corrosion coverage (pitting density, crevice attack area, or waterline attack
area) versus the depth of the attack is given in Table 8. There appears to be
little correlation between the density of the attack and the depth of the
attack for these solutions.
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Table 7. Visual Observations From Static Tests and Slow Strain Rate Tests.

Solution pH Immersed Secondary Pitting - Crevice - Pitting - Crevice - Waterline
Specimen, Cracking Immersed Immersed Vapor Vapor Attack -
Average Vapor
Corrosion Rate,
mm/y
1 12.10 1.5E-3 L L L M
2 12.13 2.5E-3 L L M M
3 13.13 5.0E-3
4 12.46 1.4E-3 L L
5 12.09 2.2E3 L Al . L M
3 11.70 1.6E-3 . M L
7 12.64 2.0E-3 L L M M L
8 12.85 2.7E-3 ' .
9 12.02 2.2E4 L L L
10 11.85 7.7E-3 L M L
11 11.52 1.1E-5 L L L L
12 12.46 1.6E-3 L L L M M
13 12.02 2.0E-4 L
14 12.88 2.6E-3 L L L
15 13.00 4.6E-3 L L L
16 12.63 3.3E-3 L L L L
17 12.99 L1E3 M L
18 12.54 1.7E-4 L L
19 12.67 2.2E-3 L L L L L
20 12.50 2.1E3
21 13.08 6.4E-3
22 12.61 2.4E-2
23 12.75 3.8E-3
24 12.93 4.6E-3

shaded cells highlight areas of concern in the data set

* secondary cracking was found in the FY 94 specimen tested in solution 12

X = identified on slow strain rate specimens tested in this solution

L = light, M = H = heavy, (indi pit density or crevice attack area)
Gr = not identified due to gross general attack in this region
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Table 8. Comparison of Density of Attack With Depth of Attack.

Waterline
Attack -
Vapor

Crevice -
Vapor Vapor

Crevice -
Immersed

Solution Pitting -
Immersed

14

15

16

17

18

19

e 2 (el e e e e |z e

20

21

22
23
24
Cell shaded represent pitting, crevice, or waterline depth =0.05 mm
L = light, M = moderate, H = heavy, (indicates pit density or crevice attack

area)
Gr = not identified due to gross general attack in this region
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Figure 6. Sludge-Washing Compositions That Led to Secondary Cracking in 1995
Test Matrix.
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Figure 7. Maximum Pit Depth for Specimens Immersed in Solutions.
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Figure 9. Maximum Depth of Crevice Attack in Immersed Specimens.
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Figure 10. Maximum Depth of Crevice Attack in Vapor Phase Specimens.
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Figure 11. Maximum Depth of Waterline Attack in Vapor Phase Specimens.
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Figure 12. Sludge-Washing Compositions That Led to Pitting, Crevice, or
Waterline Attack > 0.05 mm in the 1995 Test Matrix.
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5.0 DISCUSSION

As in FY 94, three types of corrosion tests (static coupon tests, slow
strain rate tests, and electrochemical tests) were performed in FY 95 to
assess the susceptibility of ASTM A-515 Grade 60 carbon steel to failure by
corrosion mechanisms. Whereas, the FY 94 testing was focused on scoping
studies on the effects of dilute solutions containing hydroxide, nitrate and
nitrite, the FY 95 testing was more tightly focused on (1) better paramatizing
a troublesome FY 94 compositional regime, (2) enlarging the compositional
regime to higher values of nitrate and nitrite, and (3) include the effects of
chlorides which exist in several Hanford waste tanks. The specimens were
tested in a statistically designed test matrix of twenty-four solutions at
93 in order to more completely evaluate the dilute waste regime. Following
a six month exposure, the specimens were examined to determine their
susceptibility to uniform corrosion, stress corrosion cracking, pitting,
crevice corrosion, and waterline attack.

6.1 EFFECTS OF CHLORIDES

ASTM A-515 was very susceptible to various forms of localized corrosion
(pitting, crevice, and waterline attack) in the high chloride solutions.
Attack at and above the waterline was so pronounced (complete penetration of
the specimen) that it was difficult to uniquely identify the contributions
made by pitting, crevice, and uniform corresion. This behavior is.identified
in Table 7 by the shaded cells for the vapor phase observations and the letter
“Gr" indicating gross general attack. The greatest attack is above the
waterline in a "wicking region" where the solution wicked upward by the porous
oxide film is diluted by condensation. Thus, the attacked region is probably
exposed to a diluted solution composition compared to what exists in the
liquid phase. As the attack progresses and the oxide thickens, the attacked
region will advance higher above the 1iquid level. The key insight to this
phenomenon is that the totally immersed specimens had very Tittle attack.
Operation of the tanks within this range of process chemistry is not
recommended due to the severe attack observed in this experimental series.
Because the tests performed with high chloride concentrations were intended as
scoping tests to look at the behavior of carbon steel tank material in
simulated tank chemistries, information is only available for low chloride
solutions (solutions 1 - 20) and high chloride solutions (21 - 24). The
behavior of the carbon steel at intermediate chloride concentrations or
whether there exists a threshold concentration for this chloride effect cannot
be deduced from this study. Chlorides appeared to have no effect on SCC.
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5.2 PITTING AND CREVICE CORROSION

Pitting was observed on the specimens from many of the solutions, but as
shown in Table 8 and in the tables in Appendix F, many of the pits were
shallow and small in area. Crevice corrosion and waterline attack presented
more of a problem as far as depth of attack and area of attack for many of the
specimens, especially in the vapor phase. This corresponded to penetration
rates from crevice attack of up to 0.38 mm/y (0.19 mm over 6 mo) for specimens
immersed in solution 2 and 0.42 mm/y (0.21 mm over 6 mo) for specimens in the
vapor phase of solution 2. Similar penetration rates were found for waterline
attack, with up to 0.42mm/y (0.21 mm over 6 mo) measured for specimens in
solution 10. At these rates, a 12.7 mm (1/2-in.) steel tank wall would be
penetrated in 30 years. Sludge washing operations should only expose the
tank to these chemistries for under a year, so penetration due to localized
corrosion processes is not expected to cause failure under these
circumstances. Operation of the tanks under these chemistries for long
periods of time, >30 years, would not be advisable due to the risk of through-
wall penetration.

The potentiostatic polarization curves suggest that there is a
propensity for pitting for certain potential ranges for immersed specimens in
the dilute tank waste chemistry. The electrochemical potential at which
pitting could occur, however, is too anodic for pitting to be found in the
field, and this was confirmed by the static tests discussed in this report.
Although there was a pitting potential identified for solutions 3, 8, 15, 16,
17, and 19, pitting was only observed on specimens tested in solution 19 and
only light pitting was observed in that solution chemistry. The experimental
results follow the same trend as the pitting tests in a dilute waste chemistry
regime carried out at the Savannah River Laboratory (Zapp 1988a, 1988b, 1989a,
1989b). Both studies indicate pitting is associated with a low
nitrite/nitrate ratio, although pitting was not observed for all solutions
containing the Tow nitrite/nitrate ratio.

5.3  UNIFORM CORROSION

The uniform attack data for the totally immersed specimens is shown in
Table 7. Except for the chloride-containing solutions, all the uniform attack
rates are below 5.1E-3 mm/y (0.2 mpy), making this mode of degradation
unimportant. Two of the chloride solutions resulted in higher rates, but the
localized attack associated with the chloride solutions dwarfs any uniform
attack probtems.
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5.4  STRESS CORROSION CRACKING

A11 of the FY 95 slow strain rate (SSR) tests had elongations greater
than Ondrejcin's criterion of < 13% elongation for SCC. In other words, none
of the 24 solutions demonstrated an ability to cause SCC of ASTM A-515 carbon
steel. Examination of the fracture surfaces of the slow strain rate
specimens did not definitively indicate SCC for any of the solution
chemistries, but areas exist on the surfaces of some specimens that differ
from the appearance of ductile failure. However, there were some disturbing
observations in the test data that leads one to believe that the SSR technique
is not adequately conservative for predicting SCC behavior:

1. Secondary cracking was noted on the gage lengths perpendicular to the
applied stress for specimens that were tested in seven solutions: 6, 8,
9, 12, 14, 20, and 23.

2. Solutions 12 and 20 indicated no SCC by the Ondrejcin criterion, but
these were duplicates of a solution (#2) that indicated SCC (11%
elongation) in the FY 94 testing. When the strain rate was decreased by
1/4, the elongation decreased but was still above the Ondrejcin
criterion.

Secondary cracking on the slow strain rate specimens also occurred, with
one exception, for solutions with either a 10:1 ratio of nitrate to nitrite or
a 10:1 ratio of both nitrate to nitrite and nitrate to hydroxide. The
exception was solution 6, which has a low concentration of nitrate with a
3.3:1 ratio of nitrate to nitrite and 10:1 ratio of nitrate to hydroxide. The
specimens in the solutions that had a 10:1 ratio of nitrate to hydroxide and a
3.3:1 to 1:1 ratio of nitrate to nitrite had the lowest average corrosion
rates measured.

Determination of SCC susceptibility is not always straightforward, and
often shallow SCC penetrations are difficult to interpret in SEM photographs.
Shallow penetrations are associated with borderline SCC conditions between
those that cause severe SCC and those that cause no SCC (Payer et al. 1977).
In addition, other factors that measure the ductility of the specimen, such as
elongation and reduction of area, are considered in conjunction with the
fracture surface appearance to determine SCC susceptibility. Another feature
that contributes to the confirmation of SCC susceptibility is the presence of
secondary cracking perpendicular to the applied stress along the gage length.
Additionally, the severity of SCC is a function of the strain rate. Payer et
al. (1975) suggested that there exists a critical range of strain rate for
which the severity of SCC is at a maximum. Too high a strain rate will result
in a ductile failure of the specimen from mechanical overload, even without
the effect of environmental effects. Too slow of a strain rate will allow
repassivation of the crack tip, and will suppress the SCC (Payer et al. 1975).
The incidence of secondary cracking was noted as a suspicious finding, and it
would be recommended to avoid such chemistries during the sludge washing
operation as a conservative measure.
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Variations in test data from FY 94 when compared to data in the current
year's tests may also result from minor changes in the material chemistry of
the specimens. Corrosion susceptibility has been found to differ for minor
variations of the levels of constituents (such as sulfur and phosphorus), even
within the same ASTM specification and grade of a material. It is not
entirely clear how much variation in corrosion susceptibility can be expected
from slight changes in the minor constituents of the carbon steel. In the
absence of a such a correlation, the best results can be obtained by procuring
material for corrosion testing that is as close to the tank steel chemistry
specifications as is reasonably possible. Waste tanks at Hanford were
constructed with older steels that are "dirty" compared to modern steels
(modern steels were used in this testing program). Older steels probably
contained sulfur levels of about 0.02 wt% and phosphorus levels of about 0.013
wt% (Schwenk and Scott 1996). Steels used for specimens in FY 94 and FY 95
testing contained 0.013 wt% and 0.015 wt% sulfur, respectively, and 0.023 wt%
and 0.008 wt% phosphorus, respectively. VYield stress values for the tank
steel were reported to average 303 MPa compared to values of 405 MPa and 341
MPa reported for the FY 94 and FY 95 specimens respectively. Repeated
attempts to procure representative “dirty" steels from steel mills did not
meet with success and no archival tank material was located, so the available
steel Tots with the highest levels of sulfur and phosphorus were purchased for
each year's testing. Tests performed with the "cleaner” steels may not be
adequately conservative to assess the corrosion susceptibility due to the
enhanced susceptibility of the "dirty" steels to environmental degradation.
Therefore, some error is introduced into the testing by using "cleaner"
steels, but solution chemistries that indicate corrosion problems for the
"cleaner” steels should certainly be avoided in the tank waste environment
that contains the "dirtier" steels.

6.0  RECOMMENDATIONS FOR FUTURE WORK

Corrosion testing that has been performed in FY 94 and FY 95 to support
sludge washing operations has identified compositional regimes that should be
avoided during tank diTution. An important question remains, however, about
how well the "cleaner® steels model the corresion susceptibility of the
"dirtier" steels that the tanks were fabricated from. In addition, a scoping
study on the effects of chloride on the susceptibility of the tank steel to
corrosion has produced unexpectedly high levels of corrosive attack on the
test specimens. The chloride level that was chosen for the tests was
considered an upper bound for the chloride Tevels in the Hanford waste tanks
(Certa et al. 1993), and a more Tikely concentration of chloride in the tanks
would fall somewhere between the 0.5 M and the 30 mg/L extremes used in this
round of testing. The following recommendations are made for future work:

1. Additional testing should be performed to assess the levels of chloride

that lead to pronounced levels of attack, and identify a threshold
level, if one exists, to operate the process chemistry below.

32



WHC-SD-WM-TI-765, Rev 0

It is the opinion of the authors that every attempt should be made to
procure "dirty" steels that are more representative of the actual tank
steel chemistry. Procurement of sufficiently "dirty" steels for future
tests may require a custom mill run to specifically alloy the steel,
procurement of archival materials used in tank fabrication, or an
exhaustive search by a materials vendor. The first suggestion may be
prohibitly expensive, the second suggestion has been attempted with
little success, and the third suggestion seems Tike the reasonable
option at this time.

The experimental results should be evaluated by a statistician.

7.0 CONCLUSIONS

Specimens of A515 steel were tested in solutions representative of

anticipated sTudge-wash chemistries using the slow strain rate method,
electrochemical testing, and static testing using U-bends and corrosion test
coupons. The following conclusions were obtained from the experimental
results:

1.

The ductility of many of the specimens, as measured by reduction of
area, was slightly lower in aqueous tank chemistries, on average, than
in air. The effect of environment of elongation varied from +3.7% to -
3.4%. The elongations for the high chloride specimens were uniformly
high.

The observed small decrease in ductility could not be unambiguously
associated with SCC, as there was no definitive change in fracture
morphology from microvoid coalescence to inter- or transgranutar
fracture. For this reason, the decrease in ductility may be associated
with another, more benign, embrittlement mechanism. Secondary cracks
were found in the gage Tengths of some specimens, however, which would
indicate a propensity towards SCC.

The mechanical behavior of the tank steel was affected by the strain
rate, with those specimens tested at the lowest strain rate exhibiting
the lowest ductility. This strain-rate dependence indicates that the
mechanism responsible for the observed embrittiement is environmental,
rather than mechanical. There may exist a critical strain rate for this
material for which this material is highly susceptible to SCC that has
not been evaluated.

Although a propensity for pitting was indicated in six test solutions,
the electrochemical potential at which pitting could occur was too
anodic for pitting to be expected to occur in the field. This was, for
five of the six solutions, confirmed by the pitting observed in the
static tests. Pitting was observed for many of the solution
chemistries, but pit depth was <0.05 mm for most of the observed pits.
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Crevice corrosion was observed on the specimens for many of the solution
chemistries in the immersed phase and most of the solution chemistries
in the vapor phase, with a crevice depth of up to 0.21 mm established
over a six month period. Waterline attack was also observed for most
solution chemistries, and with measured depths comparable to the crevice
attack.

Severe corrosion attack was observed for the air/solution interface
specimens tested in the high chloride solutions, solutions 21 through
24. There was a significant amount of metal loss associated with the
corrosion processes, and the area of greatest attack was at and just
above the waterline. The severe corrosion left the specimens in a
brittle state, as was evidenced by the fracture of a specimen that was
inadvertently dropped during the cleaning operations.

Recommendations are made to avoid the solution chemistries during sludge
washing that produce secondary cracking during sTow strain rate testing
or gross general attack as that observed in the high chloride solutions.
Heavy crevice, pitting, or waterline attack has been observed for some
of the solution chemistries, but through-wall penetration for the
deepest attack is calculated at 30 years. Although the depth of attack
can be considered significant, sludge washing operations are only
expected to keep the tanks in the modified chemistry for less than one
year, so failure due to these corrosion processes is not expected.

A discrepancy was noted between this and earlier work (Danielson and
Bunnell 1994) with regard to the SSR results. It is suspected that the
Tower ductility observed in the earlier work is due to higher sulfur and
phosphorus contents of the material used previously. If this theory is
correct, it would indicate that the current tests may be nonconservative
in evaluating the performance of the double-shell tank steels, which
were made using production techniques that are no longer used. On the
other hand, the stress-relieving heat treatment used in the current work
would tend to make the material more susceptible to SCC, resulting in
more conservative test results.
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APPENDIX A: SEM PHOTOGRAPHS OF SLOW STRAIN RATE SPECIMEN FRACTURE SURFACES
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Figure A.1b. Higher Magnification of Fracture Surface
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Figure A.2b. Higher Magnification of Fracture Surface
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Figure A.4b.  Higher Magnification of Fracture Surface
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Figure A.5a.  Fracture of Specimen from Solution 4

Figure A.5b. Higher Magnification of Fracture Surface
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Figure A.6a.  Fracture of Specimen from Solution 5

Figure A.6b. Higher Magnification of Fracture Surface
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Figure A.7a.  Fracture of Specimen from Solution 6
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Figure A.8a. Fracture of Specimen from Solution 7

Figure A.8b. Higher Magnification of Fracture Surface
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Figure A.9a. Fracture of Specimen from Solution 8

Figure A.9b. Higher Magnification of Fracture Surface
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Figure A.10a.  Fracture of Specimen from Solution 9
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Figure A.10b. Higher Magnification of Fracture Surface
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Figure A.11a.  Fracture of Specimen from Solution 10

Figure A.11b. Higher Magnification of Fracture Surface
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Figure A.12a.  Fracture of Specimen from Solution 11

Figure A.12b. Higher Magnification of Fracture Surface
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Figure A.13a.  Fracture of Specimen from Solution 12

Figure A.13b. Higher Magnification of Fracture Surface
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Figure A.14a.  Fracture of Specimen from Solution 13

Figure A.14b. Higher Magnification of Fracture Surface
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Figure A.15a.  Fracture of Specimen from Solution 14

Figure A.15b. Higher Magnification of Fracture Surface
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Figure A.16b. Higher Magnification of Fracture Surface
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Figure A.17a.  Fracture of Specimen from Solution 16

Figure A.17b. Higher Magnification of Fracture Surface
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Figure A.18a.  Fracture of Specimen from Solution 17

Figure A.18b. Higher Magnification of Fracture Surface
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Figure A.19a.  Fracture of Specimen from Solution 18
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Figure A.19b. Higher Magnification of Fracture Surface

Al19



WHC-SD-WM-TI-765, Rev O

Figure A.20a.  Fracture of Specimen from Sojution 19

Figure A.20b. Higher Magnification of Fracture Surface
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Figure A.21a. Fracture of Specimen from Solution 20

Figure A.21b. Higher Magnification of Fracture Surface
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Figure A.22a.  Fracture of Specimen from Solution 21
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Figure A.23a.  Fracture of Specimen from Solution 22
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Figure A.25a.  Fracture of Specimen from Solution 24

Figure A.25b. Higher Magnification of Fracture Surface
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Figure A.26a.  Fracture of FY94 Specimen from Solution 12

Figure A.26b. Higher Magnification of Fracture Surface
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Figure A.27a.  Fracture of Specimen from Solution 12,
Slower Strain Rate

Figure A.27b. Higher Magnification of Fracture Surface
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APPENDIX B: POTENTIODYNAMIC SCANS
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APPENDIX C: PHOTOGRAPHS OF REPRESENTATIVE SPECIMENS PRIOR TO CLEANING
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Observations on Cleaned Specimens:
Pitting (Density, Size, Maximum Depth), Crevice Attack (Maximum
Depth), Waterline Attack (Maximum Depth)

Solution 1

Pitting: incipient pits
Immersed Specimens 2.5E3/m?, <0.5 mm?, <0.4 mm

Crevice Attack: 0.20 mm deep

Air/Soln Interface Pitting: 1E4/m?, 0.81 mm?®, <0.4 mm

Specimens
Crevice Attack: 0.14 mm deep

Waterline attack: 0.02 mm deep

Solution 2

Pitting: 2.5E3/m?, <0.5 mm?, <0.4 mm
Immersed Specimens
Heavy Crevice Attack: 0.19 mm deep

Air/Soln Interface Pitting: 1E4/m?, 0.81 mm?®, <0.4 mm
Specimens
Moderate Crevice Attack: 0.21 mm deep

Waterline attack: 0.03 mm deep

Solution 3

Pitting: none
Immersed Specimens
Crevice Attack: none

Air/Soln Interface Pitting: none
Specimens
Crevice Attack: none, except incipient
crevice on one U-bend specimen




Solution 4
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Immersed Specimens

Pitting: none

Crevice Attack: none, except incipient
crevice on one U-bend specimen

Air/Soln Interface
Specimens

Pitting: 2.5E3/m?, <0.5 mm?, <0.4 mm
Light Crevice Attack: 0.04 mm deep

Waterline attack: 0.06 mm deep

Solution 5

Immersed Specimens

Pitting: 1E4/m?, 2.48 mm?, <0.4 mm

Heavy Crevice Attack: 0.12 mm deep

Air/Soln Interface
Specimens

Pitting: 1E4/m?, <0.5 mm?, <0.4 mm
Moderate Crevice Attack: 0.08 mm deep

Waterline attack: 0.09 mm deep

Solution 6

Immersed Specimens

Pitting: 1E4/m’ - S5E4/m?, 1.82 mm?, <0.4
mm

Heavy Crevice Attack: 0.18 mm deep

Air/Soln Interface
Specimens

Pitting: 5E4/m?, 0.81 mm®, <0.4 mm
Light Crevice Attack: 0.06 mm deep

Waterline attack: 0.19 mm deep




Solution 7
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Immersed Specimens

Pitting: 2.5E3/m?, <0.5 mm?, <0.4 mm

Light Crevice Attack: 0.09 mm deep

Air/Soln Interface
Specimens

Pitting: 5E4/m?, <0.5 mm?, <0.4 mm
Crevice Attack: 0.14 mm deep

Waterline attack: 0.05 mm deep

Solution 8

Immersed Specimens

Pitting: none

Crevice Attack: none

Air/Soln Interface
Specimens

Pitting: none

Crevice Attack: none

Solution 9

Immersed Specimens

Pitting: 2.5E3/m?, <0.5 mm?, <0.4 mm

Light Crevice Attack: 0.15 mm deep

Air/Soln Interface
Specimens

Pitting: 1E4/m?, <0.5 mm®, <0.4 mm
Light Crevice Attack: 0.05 mm deep

Waterline attack: 0.02 mm deep




Solution 10
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Immersed Specimens

Pitting: 1E4/m?, 50.11 mm?, <0.4 mm

Heavy Crevice Attack: 0.16 mm deep

Air/Soln Interface
Specimens

Pitting: 5E4/m?, 0.62 mm?, <0.4 mm
Light Crevice Attack: 0.09 mm deep

Waterline attack: 0.21 mm deep

Solution 11

Immersed Specimens

Pitting: None

Light Crevice Attack: 0.06 mm deep

Air/Soln Interface
Specimens

Pitting: 1E4/m?, <0.5 mm?, <0.4 mm
Light Crevice Attack: 0.07 mm deep

Light waterline attack on one U-bend

Solution 12

Immersed Specimens

Pitting: 2.5E3/m?, <0.5 mm®>, <0.4 mm

Light Crevice Attack: 0.04 mm deep

Air/soln Interface
Specimens

Pitting: 2.5E3/m?, <0.5 mm?, <0.4 mm
Moderate Crevice Attack: 0.07 mm deep

Waterline attack: 0.05 mm deep

Solution 13

Immersed Specimens

Pitting: none

Crevice Attack: none

Air/Soln Interface
Specimens

Pitting: 2.5E3/m?, <0.5 mm?, <0.4 mm
Crevice Attack: none




Solution 14
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Immersed Specimens

Pitting: none

Crevice Attack: none

Air/Soln Interface
Specimens

Pitting: 1E4/m?, <0.5 mm?, <0.4 mm
Crevice Attack: none

Light waterline attack: 0.08 mm deep

Solution 15

Immersed Specimens

Pitting: none

Crevice Attack: none

Air/Soln Interface
Specimens

Pitting: 2.5E3/m?, 1.27 mm?, <0.4 mm
Light Crevice Attack: 0.05 mm

Light waterline attack: 0.02 mm deep

Solution 16

Immersed Specimens

Pitting: none

Light Crevice Attack: 0.02 mm deep

Air/Soln Interface
Specimens

Pitting: 1E4/m?, 0.81 mm®, <0.4 mm

Very Light Crevice Attack: 0.02 mm deep

Light waterline attack: 0.08 mm deep




Solution 17
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Immersed Specimens

Pitting: none

Crevice Attack: none

Air/Soln Interface
Specimens

Pitting: 5E4/m?, 1.27 mm?, <0.4 mm

Very Light Crevice Attack: 0.07 mm deep

Solution 18

Immersed Specimens

Pitting: none

Crevice Attack: none

Air/Soln Interface
Specimens

Pitting: 1E4/m?, 0.81 mm?®, <0.4 mm
Light Crevice Attack: on one U-bend 0.08
mm deep

Solution 19

Immersed Specimens

Pitting: 2.5E3/m?, <0.5 mm?, <0.4 mm

Light Crevice Attack: on U-bend 0.11 mm
deep

Air/Soln Interface
Specimens

Pitting: 1E4/m?, <0.5 mm®, <0.4 mm
Light Crevice Attack: 0.14 mm deep

Waterline attack: 0.02 mm deep

Solution 20

Immersed Specimens

Pitting: 2.5E3/m?, <0.5 mm?, <0.4 mm

Crevice Attack: none

Air/Soln Interface
Specimens

Pitting: 1E4/m?, 0.81 mm?, <0.4 mm
Light Crevice Attack: 0.08 mm deep

Waterline attack: 0.03 mm deep




Solution 21
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Immersed Specimens

Pipting: none, grainy appearance to
surface

Crevice Attack: 0.37 mm deep

Air/Soln Interface
Specimens

gross general attack, especially at and
just above waterline

Solution 22

Immersed Specimens

Pitting: pronounced pitting
1E5/m?, <0.5 mm?, <0.4 mm

Heavy Crevice Attack: 0.34 mm deep

Air/Soln Interface
Specimens

gross general attack, especially at and
just above waterline

Solution 23

Immersed Specimens

Pitting: 1E4/m?, <0.5 mm?, <0.4 mm

Light Crevice Attack: 0.38 mm deep

Air/Soln Interface
Specimens

gross general attack, especially at and
just above waterline

Solution 24

Immersed Specimens

Pitting: slight pitting
2.5E3/m?, <0.5 mm?, <0.4 mm

Very Light Crevice Attack: 0.09 mm deep

Air/Soln Interface
Specimens

gross general attack, especially at and
just above waterline
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