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Abstract: A fractional crystallization (FC) process is being developed to
supplement tank waste pretreatment capabilities provided by the Waste
Treatment and Immobilization Plant (WTP). FC can process many tank
wastes, separating wastes into a low-activity fraction (LAW) and a
high-activity fraction (HLW). The low-activity fraction can be
immobilized in a glass waste form by processing in the bulk
vitrification {(BV) system.
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ABSTRACT

A fractional crystallization process is being developed to supplement tank waste pretreatment
capabilitics provided by the Waste Treatment and Immobilization Plant (WTP). Fractional
crystallization can process the vast majority of tank wastes comprised of dissolved salts with
rclatively low to medium soluble radioactivity, scparating wastes into a low-activity fraction and
a high-activity fraction. The low-activity fraction can be immobilized in a glass waste form by
processing in the bulk vitrification (BV) system. The high-activity fraction will be rcturned to
the double-shell tank (DST) system for fecd to the WTP,

The Hanford Medium/Low Curic Waste Pretrcatment Project Phase [ Process Plan reviews
process theory, discusses thermodynamic chemical process modeling results, and presents a
preliminary conceptual design for the fractional crystallization process. A preliminary cost
estimate and schedule arc provided for deploying the fractional crystallization process to treat
Hanford tank wastcs.

KEY WORDS

Fractional crystallization, BV feed, waste pretreatment system, sulfate removal, cesium removal,
ESP model, thermodynamic chemical process model, Hanford Medium/Low Curie Pretreatment
Project, burkeite
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EXECUTIVE SUMMARY

In accordance with the Hanford Federal Facility Agreement and Consent Order jointly agreed to
by the Washington State Department of Ecology (Ecology), the U.S. Environmental Protcction
Agency (EPA), and the U.S. Department of Encrgy — Office of River Protection (DOE-ORP), all
Hanford underground tank wastes must be treated by 2028. Key to achieving this goal is to
develop and deploy technologices to treat and immobilize the low activity wastes (LAW) which
comprisc the bulk of the tank contents. Since sodium nitrate comprises the bulk (about 67%) of
the tank wastes, its removal is esscntial to achicving the deadline. In 2004 DOE-ORP decided
that a process known as bulk vitrification (BV), a commercially proven process for immobilizing
hazardous wastcs, would undergo further development as a way to treat the LAW. BV was
sclected becausce it can tolerate higher levels of certain waste components, primarily sulfate, than
the LAW melters currently being developed for the Hanford Waste Treatment Plant (WTP).
Although the BV proccess is robust and can accommodate a wider range of sulfate bearing feed
stocks than the WTP, it is limited in the amount of radioactive constituents (primarily cesium —
137Cs) it can receive because of considerations for the radiological dose rate to operating
personnel and the total curic content of the waste package. The liquid waste feed to BV is mixed
with a glass former (sand), heated to remove excess moisture, and fed to a melter until the waste
container is full. To condition the feed for BV (i.c. increasc sulfate loading and remove 'Y’Cs),
while removing sodium nitrate from tank wastes, DOE-ORP sought a pretreatment system that
could process dissolved saltcake waste (retricved from single shell tanks — SSTs) and dissolved
salt slurry waste (from double shell tanks — DSTs). In December 2004 fractional crystallization
was sclected for evaluation as the pretreatment system and it would be evaluated by a two-
phasecd program.

Fractional crystallization is another commercially proven process, typically used for
pharmaceuticals (purifying drugs) and industrial chemicals (clcansers, fertilizers, etc.), that
works by cvaporating feed stocks and sclectively (by varying process paramecters) forming pure
crystalline products. During formation of pure crystalline products, impuritics (of particular
interest is "*'Cs) arc excluded from the growing crystal lattices duc to differences in jonic radii.
In addition, for the opcerating ranges proposed, the soluble radionuclides are far from their
saturation concentrations and do not crystallize from solution during cvaporation.

The two-phascd program would determine the feasibility of using fractional crystallization by
first demonstrating its usc on simulants, formulated to closcly resemble SST/DST waste, then
using it to scparatc actual SST/DST tank waste. It is the goal of the process to keep
radionuclides in the liquid phase while separating low-activity sodium salts; therefore, the
fractional crystallization system has to demonstrate that it can successfully remove sulfates and
sodium nitratc as well as providc a low curie feed to the BV process. The processed waste
containing higher levels of radioactive materials, but lacking high levels of sulfate, will be routed
back to the DSTs for eventual processing by the WTP.

This Process Plan developed for the first phase study — Phase I of the Medium/Low Curic
Prctreatment Project — concentrates on the theoretical aspects of fractional crystallization and
how it could be deployed at Hanford. Details of the laboratory testing program with resutlts of
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the simulant experiments can be reviewed in Hanford Medium/Low Curie Waste Pretreatment .
Project — Phase I Laboratory Report (RPP-RPT-27239). '

This plan reviews the basic chemical engineering concepts essential to understanding the unique
characteristics of the SST/DST wastes and how they can be manipulated with the fractional
crystallization process variables. Key to this understanding is the usc of a thermodynamic
chemical process model, Environmental Simulation Program (ESP) by OLI Systems, Inc, that
was uscd fo determine what reactions could occur by investigating waste constitucnt propertics
such as Gibbs Frec Energy, solution solid phascs, solution ionic strength, cffects of pH,
temperature, water content, ctc. The model was used extensively to guide [aboratory simulant
cxperiments (from two- or three-component “simple solutions™ up to the complete multi-
componcnt simulants), and cstimate actual waste behavior to allow conceptualizing actual
process equipment. The usc of carbon dioxide (carbonation), to condition the waste, was
cxplored with the model and laboratory work. Treating two other waste components, alumina
and nitrites, was cvaluated with the model, but left for future laboratory work to determine
feasibility. Concurrent with estimating the various crystalline salt product yields, the model can
also estimate theorctical cesium removal, an important consideration for the BV feed.

Using commercial crystallization experience, ESP model predictions, and laboratory simulant
work, a conceptual two-stage crystallization process has been proposed for treating the Hanford
SST/DST wastes. To minimize overall project costs, a single facility is proposcd for both
demonstration studics (two years) and production capability (17 ycars). The functions/basic
characteristics of the proposcd process components are discussed and these are used as the bases
for an ALARA Study and a qualitative Preliminary Hazard Assessment. Based on these
evaluations the Fractional Crystallization Facility was conscrvatively designated as a Category 2,
non-reactor nuclear facility in accordance with DOE-STD-1027-92. This designation was then
uscd to evaluate a partial life cycle cost (including design, construction, testing, operation, and
decontamination and decommissioning — D&D) of $187.7 million. This preliminary estimate is
considcred as a partial life cycle cost becausc it does not include DOE-ORP (owner) or Tank
Farm Opcrator (TFO) oversight during the facility life cycle. This estimated cost also docs not
reflect the impact of operational decisions, i.c. tank farm interfaces (tankage/piping/solids
rcmoval) and process analytical requirements which have been deferred to Phase I of the
project. A schedule, which allows for design work to proceed in parallel with Phase 11
radioactive wastc testing, has also been proposed which provides for “hot” (radicactive)
opcrations to commence late in CY 2009.
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1.0 INTRODUCTION

1.1 PROJECT BACKGROUND

The Department of Encrgy-Office of River Protection (DOE-ORP) is responsible for the
remediation of the Hanford Site tank farms, including 53 million gallons of mixed waste (waste
with both hazardous and radioactive components) contained in 149 single-shell tanks (SST) and
28 double-shell tanks (DST). DOE-ORP manages the River Protection Project (RPP). In the
current approach to tank waste remediation under the RPP, waste retricved from the tanks will be
partitioned to separate the high-level waste (HLW) constituents from the large volumes of low-
activity wastc (LAW) in the tanks. The HLW constituents are to be vitrificd in the Waste
Treatment Plant (WTP), stored onsite, and ultimately disposed of in the offsite national
repository. The LAW also would be vitrified in the WTP and then disposed of onsite in trenches
that comply with the Resource Conscrvation and Recovery Act of 1976 (RCRA) as amended,
including the Land Disposal Restrictions of 1984, and with DOE Order 435.1, Radioactive
Waste Management.

Under a consent order entered into by the Washington State Department of Ecology (Ecology),
the U.S. Environmental Protection Agency (EPA), and the DOE-ORP, the treatment of all
Hanford Site tank waste s to be completed by 2028. The Mission Acceleration Initiative (MAI)
was developed to help ensure that the 2028 tank waste treatment milestone would be met. A key
clement of the MAL is the testing, cvaluation, design and deployment of supplemental LAW
treatment and immobilization technologics to provide additional LAW processing capacity.

In the first quarter of fiscal year (FY) 2004, DOE-ORP decided that the supplemental technology
known as Bulk Vitrification (BV) would undcrgo further development. The BV process can
tolerate higher levels of certain waste components (c.g. sulfate) than the WTP. In December
2004, fractional crystallization was sclected for evaluation as a pretrecatment process for the
LAW to ensure that problematic waste components arc diverted preferentially to the BV facility,
while radionuclides (primarily '¥’Cs and *’Tc) arc diverted to the WTP.

The Pretrecatment System will receive clarificd, i.e. entrained solids removed, dissolved saltcake
waste (retrieved SSTs) and/or dissolved salt slurry waste (from DSTs). Entrained solids present
in the LAW feeds can contain high concentrations of *°Sr and transuranic (TRU) elements and
must be removed 1o ensure the immobilized LAW meets disposal requirements for *Sr and
transuranic elements. Entrained solids removal (filtration) is to be performed by the Tank Farm
contractor and is outside the scopc of the current project. The function of the Pretreatment
System will be to use fractional crystallization to separate the waste into two or more strcams,
onc of which will be routed to the WTP feed tanks. The remaining stream(s) will be routed to
BV. The Pretreatment System will be an integral component of an overall waste treatment
system (scc Figure 1).
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Figure 1. Tank Wastc Treatment System.
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1.2 SCOPE

Dcmonstrating fractional crystallization for waste pretreatment is a two phasc process. Phasc [
(Scptember 2005) establishes the basic laboratory scparation processcs using simulated tank
wastes and guided by thermodynamic chemical process simulation models. Results of the
laboratory experiments can be examined in the “Hanford Medium/Low Curic Waste
Pretreatment Project - Phasc I Laboratory Report” (RPP-RPT-27239). Phase 11 of the project
repeats the Phasc I experiments, but actual tank wastes will be used in place of simulants.
Simulant experiments will also be conducted during Phase II to gain additional knowledge of salt
behavior during crystallization.

In addition to developing the waste separation processcs, an integral task of Phasc I was to
investigate the feasibility of deploying a fractional crystallization system (FCS) at Hanford. This
plan reviews the chemical process basics, introduces a preconceptual design of the proposed
FCS, and presents the estimated schedule and life cycle cost for system deployment near the
Dcmonstration BV System (DBVS) in the Hanford 200 West Arca. The proposed site location
(Figure 2 and Figure 3) was sclected becausc it is adjacent to the DBVS and close to the
underground waste tanks that will supply the feed material,
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Figure 2, Proposed Fractional Crystallization Site.
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Figure 3. Aerial Photo DBVS Site
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2.0 PRETREATMENT BACKGROUND

2.1 PROCESS OVERVIEW

Crystallization of Hanford wastc and Hanford-typc wastes has been practiced in the Hanford
242-A, 242-S evaporators, and similar industrial processes for many ycars. The operational
242-A evaporator has been used to reduce waste volume by evaporating water and crystallizing
sodium salts from Hanford waste. However it does not perform selective (or fractional)
crystallization and the sodium salts are not separated and decontaminated from the residual
liquor.

The processces used to crystallize and decontaminate sodium salts found in Hanford waste arc
currently practiced in commercial industries at high production rates', such as sodium carbonate
and sodium nitrate production. Fractional crystallization, as a mcthod to scparate pure sodium
chloride, borate, carbonate, and sulfate salts from brine containing organic matter, sulfides,
tungsten, iodine, and other impuritics was practiced by Kerr-McGee Chemical Corporation at
Scarles Lake, California. The process uscs temperature swings and crystal sceding, as well as
physical scparations to improve yiclds and purity of the multi-product plant. Solubility data
developed for the Searles Lake fractional crystallization processes are still in usc today.?
Howcver, Hanford waste is unlike the fecdstocks to commercial processes. The composition of
the waste varics from tank to tank and even cach tank is not a homogencous mixture. This
variability affccts the saturation points and theorcetical yiclds of sodium salts. The relative
abundance of sodium nitrate, nitrite, carbonate, sulfate, fluoride, hydroxide, and aluminate, as
well as radionuclides cesium, technetium, and iodine determine the extent of crystallization and
dccontamination that must be achicved to mect the process requirements.

To meet the challenges of separating pure sodium salts from Hanford waste, a graduated
approach has been taken to the development of the process. Laboratory experiments have ranged
from simplc, two-componcent batch crystallizations, to multi-component semi-batch simulant
mixtures. Thermodynamic modeling has been used to plan laboratory experiments and develop
proccss flowsheets. In each case, thermodynamic modeling has proven adcquate to estimate the
outcome of the experiments.

Laboratory experimentation has determined that the major sodium crystal crops form in two
distinct sizes in batch crystallization. Burkeite and sodium carbonate monohydrate grow slowly
and form small crystals (10-20 micron), while sodium nitrate and nitritc grow rapidly and form
large crystals (>100 micron). The relative abundance of these crystal systems varies in the waste
fcedstocks.

! A modem industrial soda ash crystallizer produces 100 tons/hour Na,CO5-111,0.
2 Teeple, J.E., 1929, The Industrial Development of Scarles Lake Brines, Chemical Catalog Co., New York, NY.
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To mcet the requirements for sodium yield and sulfate removal, the FCS will be designed to
optimize the conditions for growth of the two crystal types. A preconceptual configuration of
this system is shown in Figurc 4. Two crystallizers will be employed and two solids scparation
systems will be used for the two crystal types. The crystallizers will operate in continuous modc;
fine crystals will be recycled to the evaporator bodics to provide crystal sceds and to incrcase
finc crystal residence time. By these methods, the conditions for crystallization and separation
can be controlled scparatcly; the two crystal crops will be sceded, grown, and harvested under
optimum conditions for the two crystal types.

2.2 EQUILIBRIUM MODELING OF FRACTIONAL CRYSTALLIZATION

In multi-component Hanford waste, the solubility of components cannot be predicted from
solubility diagrams or by hand calculation techniques because of the complexity of the
chemistry. Solubility of components is a function of the water content, initial concentrations of
the salts, free hydroxide, temperature, and ionic strength, To predict the solubility of
components, the yield during crystallization, and the extent of decontamination, computational
thermodynamic models arc uscd.

ESP software® has been enhanced to simulate high ionic strength aqucous systems, such as
Hanford waste, Recently, imFrovcmcn(s were made in the sodium carbonate, sulfate, fluoride,
nitrate, and nitrite databanks” to accurately predict sodium salt solubilitics and physical
propertics of Hanford waste. The ESP modcl was uscd for the development of the solubility
phasc diagrams and evaporation survey graphs presented in this report. Mixed Solvent
Electrolytc (MSE) software has recently been developed by OLI systems to model high ionic
strength solutions such as crystallization liquors. The software is more stable than ESP; however
at this time it is not as accurate as the ESP software using the WTPBASE databank.

Equilibrium modeling has limitations in modeling fractional crystallization. Firstly, although
sodium salts rapidly’ achicve cquilibrium in aqucous solution, metals (such as alumina) do not.
Thus, although metal and mincra! precipitates may be thermodynamically favored, their
formation may be kinctically limited. Secondly, although the models can accurately predict
solubility of salts in known solutions (i.c. simulants), the accuracy of the model is limited to the
accuracy of the sampling and analysis of an unknown material (i.e. large non-homogencous
wastc tanks). Thirdly, a thermodynamic model cannot predict solubility of unknown compounds.
Until rcccntly°, solubility data for the Na;F(POy);-19H,0 system were scarce. Finally, although
the model can predict a theoretical Decontamination Factor (DF - ratio of influent activity to
cfflucnt activity), the actual DF achicved depends heavily on solid/liquid scparation and washing
cfficiencics which can not be predicted by thermodynamic modcling alone.

3 Leased from OLI Systems of Morristown, N.I.

* WTPBASE databank was developed by OLI Systems for use on Hanford waste chemistry.,

3 “Rapidly”, in this context, is a relative term

® Internal Memo, Herting, D. L. to Nguyen, D, M., “Phosphate Solubility Under C Farm Retricval Conditions,”
7S110-DLI-5-027, dated July 18, 2005,
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Despite the limitations, thermodynamic modeling has proven very valuable in understanding
multi-component solubility, planning crystallization experiments, and developing the fractional
crystallization process.

Process thermodynamic modcling has been performed on Hanford waste simulant chemistries to
develop the preliminary FCS process flowshects and determine the maximum theoretical yicld of
sodium salts in fractional crystallization processcs. The preliminary flowshects and mass
balances of the proposed two-stage crystallization process arc shown in Figures 5, 6, and 7.
Appendix A provides SI units for the SST Early Feed flowshceet, Appendix B provides SI units
for the SST Late Feed flowsheet, and Appendix C provides the S1 units for the DST flowsheet.
The flowsheets use the technique of carbonation (sce Scction 3.7) to reduce solubility of sodium
salts and improve theoretical sodium yicld.

Soluble alumina salts, ¢.g. sodium aluminate (NaAlQjy), resulting from spent nuclear fucl
processing are contained in the tank wastes. To maintain the alumina in solution, substantial
amounts of sodium salts (NaOH, Na,CO;, ctc.) arc nceded and if these salts are removed by the
FCS to obtain current required sodium yields, an alumina gel can form in tank wastes with high
solublc alumina content. One way to obtain high sodium yield is to remove the alumina through
Gibbsite (AI(OH);) crystallization; however, alumina removal is not currently included in the
scope of the fractional crystallization (FC) process.

Gibbsite AI(OH); crystallization is thermodynamically favored and is widely practiced in the
aluminum industry; however, the crystallization rate, compared to sodium salts, is too slow to
produce scparable crystals by the current process. Although carbonation may be applicd to trim
“cxcess” free hydroxide from the waste during fractional crystallization, it is not intended to
precipitate alumina as gibbsite. At this time, it is the intent of the FCS to maintain alumina in
solution during the crystallization process by modcrating the extent of carbonation to maintain
alumina solubility, but gibbsite crystallization should be considered for future development.

Another potential method to increase sodium yiceld is through partial oxidation of the wastc to
convert sodium nitrite to sodium nitrate. This method has been proven experimentally on
Hanford waste with the usc of ozone. However, the use of 50% hydrogen peroxide solution,
under contro! of redox (oxidation-reduction potential) mcasurement has not been demonstrated.
The usc of a controlled hydrogen peroxide solution has several safety advantages over the usc of
ozonc gas for partial oxidation of the waste; however, this technology will require further
development prior to implementation.
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Figure 5. 88T Early Feed Flowsheet.
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Figure 6. SST Late Feed Flowsheet.

g
i Ve T bt i : s =
SR CEPRLIE

ey ey e
RS TR i i

PRELIMHARY

e I R e
ekl Al Ty G IS L

10



RPP-PLAN-27238 Rev. 0

Figure 7. DST Flowsheet.
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The composition of tank waste feed solutions to the fractional crystallization process will vary
significantly during the course of retricval. Samples of the expected ranges of SST and DST
chemical compositions are listed in Table 2 and Table 3 and were used to develop the SST/DST
simulants that are the modeling bases for the preliminary flowsheets. However to provide the
required yiclds and minimize FCS process upscts, the source batch of feed should be as large and
homogencous as possible. Operation in this mode will allow steady state operation for long
periods of time with the highest levels of product yicld and decontamination.

24 PRETREATMENT CRITERIA

The fractional crystallization process generates two major strcams; a low-curie, sodium salt
product strcam which is transferred to supplemental treatment, and a high-curic purge strcam
which is transferred to the WTP. For the current work, minimum requirements and desired
target performance arc defined in the contract and shown in Table 1.

Table 1. Minimum Acceptable Requirements
and Desired Targets for Pretreatment Process.

Pretreatment Criterion Minimum Acceptable Desired Target
OQutput Stream Requirement &
1¥1Cs activity <0.05 Ci/L <0.0012 Ci/L
Na® concentration | 5 M (+/- 20%) 5 M (+-~ 10%})
Na* split Contain at least 50% of the Contain at least 90% of
BV Feed Na* in the input stream the Na® in the input
stream
Contaminants of TRU concentration mustbe | TRU concentration must
concern® less than 100 nCifg be less than 100 nCi/g
Sulfate:sodium <0.01 0.0022
mole ratio
WTP Feed DST storage Must meet DST storage Must meet DST storage
requirements and pipeline requirements and
transfer requirements pipeline transfer
rcquircmcnls"

*Contaminants of Concern include ¥Cs, "1, #*Te, *Sr, Se, 1C, total uranium, total alpha isotopes, Cr(VI), nitrate,
nitrite, sulfate, and phosphate.

YNF-SD-WM-OCD-015 and RPP-10726

The minimum requirements for the fractional crystallization purge arc sulfate-to-sodium mole
ratio less than 0.01, and the purge must meet the DST transfer and storage requirements. The
desired sulfate-to-sodium mole ratio is less than 0.0022,

12
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Table 2, Approximate Expected Chemical Concentrations (Molarity)
in SST Feed Solutions.

Analyte Early® Feed Late® Feed

Density (g/mL) 141 1.16

Na*! 8.70 2,90

AlY 0.48 0.04

Cr't 0.08 0.01

K" 0.03 0.01

NO,* 3.90 1.60

ou! 1.50 0.01

CO,? 0.92 0.27

NO,"! 0.59 0.07

50, 0.14 0.17

PO,* 0.04 0.05

cr 0.08 0.01

F! 0.03 0.10

0, 0.0t 0.02
7Cs® (WCi/mL) 100 1o

*Early Feed means composition of dissolved saltcake early in the retrieval process; Late Feed means composition of
dissolved saltcake late in the retrieval process.

®The activity shown in the table is representative of the levels expected in actual waste.

13
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Table 3. Approximate Expected Supernatant Chemical Concentrations (Molarity)
in DST Feed Solutions.

Analyte AN-103 AN-104 AN-105 AW-101

Density (g/ml.) 1.46 1.41 1.43 1.45

Na'! 7.00 7.00 7.00 7.00

Al? 0.74 0.91 1.0t 0.76

K" 0.28 0.11 0.11 0.59

cr® 0.007 0.004 0.003 0.001

otr' 3.68 2.46 2.11 372

NO;" 1.34 1.74 1.7t 1.78

NO;™ 1.86 1.68 1.71 1.49

cr' 0.18 0.15 0.18 0.1t

Co;? 0.06 0.12 0.12 0.08

C,t1,0,"™ 0.08 0.08 0.12 0.09

F 0.019 0.003 0.013 0.025

S0,? 0.008 0.011 0.008 0.005

PO,’? 0.006 0.016 0.005 0.004

C,0,? 0.004 0.005 0.004 0.004
17Cs™ (uCiYmL) 490 370 310 300

*Acetate may be considered a stand-in for total organic carbon, consisting of a number of small-molccule oxy-anions
such as formate, acetate, or citrate,

 The simulant will not contain radioactive cesium: the activity shown in the table is representative of the levels

expected in actual waste {e.g. Phase Il samples). The simulant will contain non-radioactive cesivm st a
concentration representative of the total cesium present in the DST Feed Solutions,

14
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The process requirements for S M sodium concentration in the product will be controlled during
dissolution of the product crystals while insoluble contaminants will be controlled prior to
fractional crystallization by filtration of the feed at the tank farms.

Although the minimum process requirements arc at cross purposcs, they arc not mutually
exclusive. Laboratory work’ by Dr. Dan Herting indicates a trade-off between sodium yield and
cesium decontamination. This has also proven to be the casc in thermodynamic modeling of
laboratory cxperiments. However based on operating industrial systems, full-scale crystallation
has several improvements over laboratory methods. First, slurry density (weight percent
suspended solids) can be increased from 20% to 40% per stage in full scale thereby improving
sodium yicld. Residual product moisture (deliquoring) can be reduced from 20% to 10%
improving cesium decontamination during the washing process. In the full-scale process,
partially saturated wash solutions may be used to minimize product loss during washing.
Contaminant crystal inclusions should be reduced duc to the higher intensity of mixing and
greater control of supersaturation in the full-scale process. Also, continuous operation at the full-
scale allows monitoring of operating conditions (i.c. product yicld and contamination) to allow
automatic control process parameters (evaporation rate, washing ratc) to meet the minimum
requirements and approach the desired targets. Thus, it is expected that sodium yicld and
product decontamination will be improved in full-scale operations due to higher slurry density,
better product washing, higher deliquoring cfficiency, and process control.

Although high sodium yiclds (90%) have been shown to be thermodynamically possible by
fractional crystallization of Hanford waste, it is expected that chemical or physical limitations
will restrict the extent of sodium salt recovery. For example, the presence of high solubility
salts, such as sodium hydroxide (NaOH) and sodium aluminate (NaAlQ;) and/or complementary
solubility of sodium nitrite (NaNQ;) and sodium nitrate (NaNQj;) increasc the density and
viscosity of the liquid phase thereby hindering diffusion and phasc separation. Further rescarch
may be donc on potential methods (i.e. oxidation of nitrite, alumina crystallization) to enhance
the yield of fractional crystallization.

The purge stream generated from the fractional crystallization process must mect Hanford Tank
Farms’ storage and transfer requirements. These requirements arce intended to prevent or control
the corrosion of storage tanks and associated transfer systems. The transfer and storage
requirements are provided in Tablc 4.

TRPP-RPT-26474.

15
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Table 4. Tank Farms Waste Storage and Transfer Chemistry Requirements.

Waste Temperature Range

([OH]+[NO;)

{NOj] Range Variable
T <167°F 167°F <T =<212°F T>212°F
[OH) 0.010 M <[Oll] < 0.010M <[OIl' < 0.010 M <[O}I]
5.0M 5.0M <40M
[NOy] <1.0M [NO;] 0011 M <[NO;] = 0.011 M <[NO;] = 0.011 M <[NO;) <
o 55M 55M 550 M
[NOsY <25 <25 <25

1.0M <[NO;] < [OtT]

0.1[NOy] =[Otl']<

0.1[NO;] <[OIT'}]<

0.1[NOy] =[Oll')<

5.0 M 10M 10M 40M
R [O1]+[NO;]) =0.4[NO;] =0.4 [NO;y] =0.4 [NOy]
[OH] 03M <[OH]<10M | 0.3M <[OI)<10M | 03M <[Oll<
40M
INOS1>3.0M ™ i 1 NOy ] =12M =12M >12M
[NO;] <55M <5.5M <5.5M

*RPP-10726, Rev. 1

Becausc fractional crystallization is performed under vacuum, it is expected that all streams

exiting the fractional crystallization system will have a temperature less than 167°F (75°C).

Since the concentrations of salts in the purge stream are not readily adjustable, it is necessary to
plan the extent of crystallization to ensurc that the minimum requirements for tank farm
chemistry can be met. However, depending on the target yield and the extent of evaporation and
carbonation, the concentrations of sodium hydroxide and nitrite may not be present in the
required quantitics in the fractional crystallization purge strcam.

It is undesirable to add NaOH and/or NaNO; to the purge stream, so it may be beneficial to blend
the purge stream with another (existing) wastc strecam to mect the requirements. In many cascs,
this can be done by bypassing a portion of the feed stream into the purge stream and, in general,
amounts to less than 2 percent of the total feed. By this method, the chemistry requirements for
storage and transfer can be met without adding additional sodium salts to the waste.

In the casc that carbonation is not used, concentrations of sodium hydroxide and nitrite will
increase during fractional crystallization. Thus, if the feed material meets the storage and
transfer chemistry requirements, theoretically the purge strcam will also meet the requirements.

16
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3.0 PROCESS THEORY

31 PROCESS DEVELOPMENT

In general, the chemical properties of the salts occurring in Hanford waste have been well
studied and well documented®, The solubility of these salts behaves the same in radioactive and
non-radioactive solutions; however, trace specics may be present in Hanford wastes that affect
the formation and growth rates of sodium salt crystals’.

For this reason, the fractional crystallization process is being developed using a graduated
approach. That is, the simplest chemical systems are studied, tested, and validated against
thermodynamic models, and then more and more complex systems are tested until representative
SST/DST waste simulants arc used. Once the propertics of these systems arc understood, “hot”
crystallization tests will be conducted on actual Hanford SST/DST waste.

This section discusscs process fundamentals and example calculations for different process
scenarios. The results arc used to guide process definition and process testing activitics and form
an important part of the process development cffort.

Crystallization occurs when an ionic species exceeds saturation in solution. The solubility of a
specics depends on concentration, temperature, and the presence of other specics in solution.
Fractiona! crystallization utilizes the conditions and concentrations of the solution to selectively
crystallize salts from solution. By this method, pure solid phascs may be created that can be
scparated from a contaminated liquid phase.

In Hanford waste chemistry, scveral species compete for solubility and several solids compcete
for precipitation of ions. The dominant ions (i.. Na*', $042, CO»?, NO;™) form common salts
(i.c. NaNO;, Na,CO;-1H,0) and double salts (i.c. Nag(§04):CO;) upon evaporation of watcr.

Soluble radionuclides (i.e. *'Cs, *Tc, '*°I) are far from their saturation concentrations and do
not crystallize from solution during evaporation. Insoluble radionuclides (e.g. uranium,
plutonium, amcricium) are removed by filtration prior to the fractional crystallization proccss'o.
By this method, nearly pure sodium salts may be scparated from radioactive contaminants in the
liquid phase with the exception of '*C which will be contained in carbonate crystals in proportion
to its concentration in the liquid phase.

8 For example, “Crystal Propertics and Nucleation Kinetics from Aqucous Solutions of Na,CO; and Na,SO,,”
Shi, B., Rousseau, R., Ind. Eng. Chem. Res. 2001, 40, 1541-1547.

* For example, “Effects of Calcium and Other lonic Impurities on the Primary Nucleation of Burkeite,” Shi, B.,
Frederick, J., Rousscau, R., Ind. Eng. Chem. Res 2003, 42, 2861-2869.

1 Organic complexed radionuclides, as in tanks AN-102 & AN-107, will not be treated by the fractional
crystallization process.
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Initial process simulation calculations focused on direct evaporative crystallization of the tank
waste simulants, and evaporative crystallization combined with carbonation (conversion of
hydroxide to carbonate by reaction with carbon dioxide). During the course of the work, it
became clear that that high concentrations of nitrite and alumina in some waste types result in
proccss difficultics that may significantly restrict achicvable removal efficiency of sodium. Two
methods were identified for reducing these problems: 1) oxidation of nitrite to nitratc using
hydrogen peroxide or ozonc; and 2) crystallization of alumina. These methods require additional
testing to verify performance but, based on thermodynamic modeling, show good promisc of
improving performance of the fractional crystallization process. A discussion of the modeling
investigation for process enhancement is contained in Appendix D.

One output of the process simulation calculations is estimated efficiencics for crystallization of
waste components during a batch cvaporative crystallization process. Table § provides a
summary of results of example calculations discussed in more detail later in Appendix E. These
cxamples arc based on evaporation to 20 molar ionic strength. If cvaporation is continued much
past this level, high viscosity and liquid density are expected to slow crystallization kinctics and
make solids/liquid separation difficult.

Table 5. Summary of Batch Crystallization Simulation Yield Calculations.

Na S04 | CO3 [ NO3 |NO2

Example 1 | Base Case 579% |98.5% |99.6% |97.9% | N/A

Example 2 | Carbonation of NaOIH 88.0% |983% |99.9% |994% |NA

Cxample 3 | Sodium Aluminate 56.6% |98.2% | 99.6% |93.9% |NA

Example 4 | Gibbsite 87.0% |98.3% |999% |994% | N/A

Example 5 | SST Early Feed 40°C 76.1% | 99.6% | 99.5% |99.1% | 92.5%

Example 6 | SST Late Feed 83.2% | 99.9% | 85.0% |92.2% |0%

Example 7 | DST 56.0% | 94.1% | 95.7% [ 91.8% | 94.9%

N/A = Did not appear in process simulation example.

While not all cascs have been modcled, the results presented illustrate the effect of carbonation
and nitrite oxidation to approach the desired targets defined in Table 1.

The calculations summarized in Table 5 arc based on theoretical batch evaporations and do not
account for losscs during crystal decontamination or recycle of supernate. Thesc topics are
discusscd further in Sections 3.10 and 3.11.

Results summarized in this scction were used to help sclect the proposed process described in
Scction 6.0.
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3.2 CRYSTALLIZATION OF HANFORD WASTE

Solubilitics of binary (one salt + water) solutions for common Hanford waste salts at 40°C and
60°C arc shown in Table 6'!, Solubilitics arc in weight percent (g solute/100 g solution).

Table 6. Solubilities of Binary Solutions for Common Hanford Waste Salts.

Salt Formula 40°C 60°C
Sodium Oxalate Na;C,0, 3.06 3.47
Sodium Fluoride NaF 4.18 433
Sodium Phosphate Na;PO, 7.9 21.2
Sodium Chloride NaCl 26.6 271
Sodium Sulfate Na,S0, 32.5 31.1
Sodium Carbonate Na,CO, 325 314
Sodium Nitrite NaNQ, 422 45.2
Sodium Nilrate NaNO,; 51.7 55.5
Sodium Aluminate NaAlQ, 477 504
Sodium Hydroxide NaOH{ 56.2 63.3

The sequence in which these salts crystallize upon heating, cooling, or evaporation depends upon
their relative abundance and the approach to saturation in the feed material. Thus, a high-
solubility salt may crystallize before a low-solubility salt. So, no generalization can be made for
the sequence of salt crystallization in variable multi-component systems.

Hydrated salts (i.c. Na,CO;-10H,0) can form altering salt solubility and water concentration.
Double salts (i.¢. Na3FSOy, Na;F(PO,),-19H:0) can form in which one component (i.c. NaF)
dramatically reduccs the solubility (scavenges) of a sccond component {i.c. Na;SO,, NazPQy).
“Eutectics” can form in which two (or more) salts (i.e. NaNO; and NaNQ;, KNO; and KNQO;)
exhibit complementary solubility where the combined solubility for two (or more) salts is greater
than the solubilitics of the single salts,

Also, the presence of other cations (e.g. Li*!, K*!, Ca*?, Mg*?) may increasc or decrease the
solubility of the corresponding anion (AI(OH),, NO;™, CO;?, OH™). For these reasons,

' Solubility data from ESP version 6.7.
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thermodynamic modeling is used to predict saturation points and yiclds of crystallization
products.

Crystals are solids in which the atoms are arranged in a periodic repeating pattern that extends in
three dimensions (crystal la(ticc) A disruption of the rcpcating pattern of atoms is said to be an
imperfection and when it is caused by a forcign atom in the lattice, it is tcnncd a “substitutional
lmpunty " Goldschmidt’s Rules for Ionic Substitution explain how Cs*! can be excluded from
Na®! based crystals produced by thc FCS. Even though they both have the same oxidation statc
(+1), the Na*" jon is smaller (Na*' ionic radius is 1.02 A and Cs*! ionic radius is 1.67 A) and
therefore forms a stronger bond with the anion in the [attice. In general, extensive substitution
docs not occur between elements whose radii differ by more than 15%.

Crystal habit rcfers to the external appearance (shape, size) of a crystal and is not only controlled
by its internal structure, but also by the conditions at which the crystal grows. The rate of
growth, the solvent used, and the impurities present can have a major impact on crystal habit.
Crystal habit will affect the rheological propertics of the suspension, the filtration or
centrifugation cfficiency, the bulk density of the solid, and the flow propertics of the solid.
Control of crystal habit, along with crystal sizc distribution, is an important part of the
crystallization process.

Crystallization can be considered a two-step process beginning with the “birth” of the crystal
from the supersaturated solution followed by growth of the crystals to larger sizes. These
proccesses are called nucleation and crystal growth, respectively. A supersaturated solution is not
at equilibrium and in order to move toward equilibrium the solution crystallizes. Once
crystallization starts, supersaturation can be relicved by a combination of nucleation and growth.
It is the relation between the extent of nucleation to crystal growth that controls the fina! crystal
size and size distribution and thus is a crucial control aspect of the FCS.

3.3 SODIUM SULFATE - SODIUM CARBONATE SOLUBILITY

Depending on relative abundance, sodium sulfate double salts may crystallize first upon
cvaporation of waste liquor. Dominant sulfatc salts are the sodium sulfatc-carbonate double salt
burkeite (Na,(S0.,),COs) or the sodium sulfate-fluoride double salt shairerite (NazFSOy).

The phase diagram, developed using the ESP model, for the H,0-Na;S$S04-Na,CO; temary
system is shown in Figure 8.
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Figure 8. NaSO4NaCO; Solubility (U.S. Patent 6,787,120)"%
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Operating line A-B depicts a solution with an initial concentration of 3 wt % NapSOy and 6 wt%
‘NayCOs evaporated to saturation at 100°C. Burkeite saturation is reached after 75 g H,0 are
-evaporated, at a concentration of 9 wt% Na,S0, and 18 wi% Na,CO; and at an ionic strength of
9 M sodium. Further evaporation crystallizes Nag(8504),COs, depleting the solution of sodium
sulfate and carbonate in a 2:1 mole ratio and follows the saturation curve from B to C. At point
(, 88 g of water have evaporated and 3.3 g Nag(SO4)CO; have crystallized from solution at a
concentration of 3.3 wi% Na;SOQ; and 29 wi% Na,COs and an ionic strength of 12 M Na.

Sodium carbonate monohydrate (Na;CO3-1H,0) redches saturation at point C and co-crystatlizes
with burkeite upon further evaporation. In a binary H,0-Na,CO; system, the monohydrate
crystal typically forms between 35°C and 106°C; sodium carbonate decahydrate
{(Na,CO3-10H;0) forms below 35°C. However, in multi-component Hanford waste, the stability
range of sodium carbonate monohydrate is extended below 35°C due to low water activity
{concentration).

Ag shown in Figure 8, further evaporation at point C co-c:ystailizes Nag(504);COz and
Na;CO5 1H,0 in equimolar propertions, so the solution is depleted in sodium sulfate and sodium
carbonate in the same proporttions. At this point, ionic strength remains constant at 12 M. At the

1.8, Paterit 6,787,120, Volume Reduction of Aqueous Waste by Evaporative Crystallization of Burkeite and
Sodium Salts, September 7, 2000, Geniesse, D,

21



RPP-PLAN-27238 Rev. 0

invariant point, the relative concentrations of sodium carbonate and sulfate in solution remain the
same while the two salts co-crystallize.

At the invariant point, additional sodium carbonate-sulfate double salts may form such as “high
carb” burkeite Nay,SO4(CO3)2.'* The additional salts deplete the aqueous phase of sodium sulfate
and carbonate upon further cvaporation,

3.4 SODIUM NITRATE - SODIUM NITRITE SOLUBILITY

The behavior of sodium nitrite and nitrate vary depending on other ions present and cvaporation
temperaturcs.

Depending on relative abundance, sodium nitrate and/or sodium nitrite may crystallize upon
further evaporation. In other cases, sodium nitrate and/or nitrite will co-crystallize with burkeitc
and/or sodium carbonate monohydrate. In some cases, sodium nitrate and nitritc will not reach
saturation until all of the sodium sulfatc and carbonatc are depleted from the aqueous phasc. In
other cascs, sodium nitrate or sodium nitrite will reach saturation and crystallize before the
sodium sulfate or carbonate reach saturation.

A phasc diagram of sodium nitrate and nitritc is shown in Figure 9. Sodium nitrate and sodium
nitrite exhibit temperature-dependant and complementary solubility. The solubility of each
species increases with temperature.

The two species form a “cutectic” in which the total sodium solubility is increased when both
specics arc present. The solubility of a two-salt system increases with further evaporation up to
the NaNO;-NaNQ; invariant — the point where the two salts co-crystallize. Thus, a ternary
solution containing H,0-NaNQ;-NaNOQ; has greater solubility than binary solutions of
H,0-NaNQ; or H;O-NaNO;.

In binary solutions at 52°C, the solubility of NaNOj; is 118 g/100 g H,O; the solubility of NaNO,
is 109 g/100 g H,O. In a ternary H,0-NaNOQ;-NaNOQ; system, the total solubility increascs to
182 g NaNO; + NaNO,/100 g H,O at the NaNO;-NaNQ; invariant point.

The increase in solubility upon evaporation is shown by the operating lincs A-B and B-C. An
initial solution of 100 g H,0, 40 g NaNQ;, and 10 g NaNO, (Point A) is evaporated to NaNO;
saturation (Point B). The solution is further evaporated to NaNO; saturation (Point C). At a total
of' 90 g of H,O evaporated, the net yicld of NaNO; is 33 g or 62.6% of the total sodium. During
crystallization, ionic strength increases from 15 M to 21 M Na.

Becausc the solubility is temperature dependent, the crystallization yield may be increased by
reducing temperature. In the above example, if the evaporation occurred at 40°C, the sodium
yield would be 68.3% at 90 g of water evaporated. lonic strength at this point is 19.2 M Na.

13 Shi, B., Rousscau, R., “Structure of burkeite and a New Crystalline Species Obtained from Solutions of Sodium
Carbonate and Sodium Sulfate,” J. Phys. Chem. B. 2003, 107, 6932-6937.
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Figure Y. Phase Diagram of Sodium Nitrate and Nitrite.
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Thus, reducing temperature can increase the yields of sodium nitrate and nitrite in a batch
gvaporation process at constant ionic strength.

3.5  ALUMINA SOLUBILITY

A diagram of alumina solubility versus free hydrox1de is shown in Figure 10. This diagram is
valid for alkaline solutions only, where AOH);” is the dominant agieous specie,

The solid lines (ESP) are isothetms in a ternary AOH):-NaOH-H,0 system'*. The dashed lines
(ESP MIX) are in a multi-component. AOH),-NaQOH-H,O system saturated with Na,COs,
NazS0y; NaNOs, and NaNQ;. Experimental points (APPS) on the graph are from the JLA. Apps
repcxrt (see reférence Section 9.0). Thermodynamic state properties (G Hy, §p) of gibbsite
AYOH)s, used in'the calculation of alumina solubility, were developed in the Apps study.

As shown in the diagram, alumina solubility is a complex function of femperature, free
hydromde and ionic strength. Increasing ionic strength by addition of additional sodium species
increases gibbsite solubility but decreases sodium aluminate solubility. The increase in alumina
solubility with ionic strength is due to the shift in the partition of hydroxide to aluminum
tetrahydroxide (Al(OH)4) with increasing sodium concentration.

" The backward curve of the gibbsite phase boundary is cansed by the formation of sodium ahuninate 2.3 hydrate.
This precipitation remioves water from solution, thus incréasing the concentration (shown in weight pexcent) of
aluminwm i solution.. If the diagram were on a molality scale, the “backward curve” would not exist.
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It desirable to maintain alumina in solition during the crystallization of sodium salts. This is
because the kinetics of gibbsite crystallization are far slower than sodium salt erystallization and
supersaturation of gibbsite can result in amorphous, high-viscosity gel formation.

During crystallization of sodium salts, evaporation increases free hydroxide concentration and
ionic strength of the solution. Thus, in most cases, alumina becomes more soluble up to the
sodium aluminate phase boundary during the evaporative crystallization process.

Operating lines of'a DST carbonation/crystallization process are shown on 60°C isotherms in
Figure 11.

Figure 11. Operating Lines of a DST Carbonation/Crystallization Process.
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The green lines are solubility curves of gibbsite and sodium aluminate for binary (solid lines}
and sodium salt saturated (dotted Hnes) muolti-component systems at 60°C. The red lines are-
successive batch steps of first carbonation, first evaporation, second carbonation, and second
evaporation. Each step is designed to maintain alumina in the soluble {AI(OH);") region during
the crystallization process.

The blue line is a one-stage continuous carbonation/crystallization operating line. As indicated.

by this example, continuous carbonation/crystallization allows a greater margin between the.
operating line and the alumina solid phase boundaries..
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3.6 OXIDATION-REDUCTION (REDOX) CHHEMISTRY

Sodium nitrate and sodium nitrite differ in the oxidation state of nitrogen. Nitrogen in sodium
nitratc has a +5 valence statc; nitrogen in sodium nitrite has a +3 valence state. When ionized in
aqucous solution, nitrogen retains its valence state in nitrate and nitrite ions.'® Nitrate and nitrite
ions arc the dominant redox couple in aqueous Hanford waste™, They provide a “redox buffer”
for the system. That is, with both tons present in abundance the system is redox neutral and
oxidants (such as ozonc) or reductants (such as hydrogen) react with nitrite or nitratc ions
without significantly changing the overall redox statc of the system.

NO,' +0, > NO,” +0, (3-1)
NO,” + 11, » NO,” + I1,0 (3-2)

These redox reactions occur duc to radiolytic hydrolysis of water and organic compounds in
Hanford wastc. The radiolysis reactions produce reactive oxygen and hydrogen species which
arc respectively reduced and oxidized with nitrite and nitrate ions.

An ESP thermodynamic simulation of a redox survey of Hanford tank wastc is shown in

Figure 12. The simulation indicates the dominant oxidation states of clements from fully
reducing to fully oxidizing aqucous conditions at the specific pH and temperature of one type of
waste.

In this case, when nitrite and nitrate arc equal, the redox potential of the system is +0.33 volts.
At a redox potential of +0.33 volts, the dominant form of manganese is Mn;04, a combination of
Mn(+2) and Mn(+3). The dominant form of silver and mercury are their metallic forms Ag(0)
and Hg(0). The dominant form of plutonium is insoluble Pu(+4). At an oxidation potential of
+2.4 volts, plutonium is equally distributed to insoluble Pu(+4) and solublc Pu(+6). Abovc a
redox potential of +2.4 volts, soluble Pu(+6) is the dominant form of plutonium,

' Thermodynamically, in oxidizing conditions {such as in air} nitrite will oxidize to nitrate.

* Chromium +6 and chromium +3 are a sccondary redox couple in Hanford waste. However, the stability of Cr"
depends ypon the solid phase present (Cr(O¥1);, CrOOH, Cr,0,). The equivalence point of Cr and Cr™® is affected
by the Cr* solid phase.
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Figure 12. ESP Thermodynamic Simulation of a Redox Survey of Hanford Tank Waste.
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Sodium hydroxide (NaOH) and sodium aluminate (NaAlO») have very high solubility and cannot
be easily crystallized from the waste by evaporative crystallization. At their solubility limits, the
solution exhibits high viscosity and density, greatly hindering crystallization and crystal
sepdrdtion.

Sodium aluminate may be considered the sodium hydroxide salt of aluminum hydroxide.
ANOH ), + NaOH —» NadlO, + 2H,0 (3-3)
To improve the yield of sodium salts by evaporative crystallization, carbon dioxide (COs) may
be used to convert the highly soluble sodium hydroxide and sodium aluminate to produce low
solubility sodium carbonate (Na,COs) and aluminum trihydroxide (gibbsite).
2NaOH + CO, ~» Na,CO, + H,0 (3-4)

INaAlO, + CO, +3H,0 > Na,CO, + 2AI(OH ),(s) (3-5)
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These arc neutralization reactions, with carbon dioxidc acting as an acid anhydride. The reaction
liberates heat, and the temperature rise depends on the initial concentrations of the reactants. In
highly concentrated systems, water may be added to reduce the temperature risc.

The ratc of reaction of sodium hydroxide to sodium carbonatce is very rapid. However, the rate of
gibbsite crystallization is very slow.!” At 50°C, gibbsitc crystals grow at a rate of 1-2 microns per
hour. Thus, carbonation may cause rapid supersaturation of sodium aluminate solutions.

High-viscosity gels have been observed to occur in sodium aluminate solutions that arc rapidly
ncutralized or carbonated. These gels are caused by the stripping of hydroxide from the
AI(OH1);" ion and creating amorphous AI(OH);. The slow growth ratc of gibbsite prevents large,
scparable crystals from forming upon ncutralization of unsceded sodium aluminate solutions.

To avoid alumina gel formation, carbonation should be controlled to maintain sufficient free
hydroxide'® in solution to maintain alumina solubility. In general, alumina solubility increases
during evaporation duc to increasing free hydroxide concentration and ionic strength up to the
sodium aluminate phase boundary.

Thus, the goal of carbonation is to increase sodium yicld by converting ¢xcess sodium hydroxide
to sodium carbonate which can be crystallized, while maintaining sufficient free hydroxide to
maintain aluminum solubility. Idcally, the solution is maintained ncar the gibbsitc phasc
boundary during cvaporation.

Further carbonation of sodium carbonate and sodium aluminate can produce the sodium
bicarbonate (NaHCQO;) and sodium alumina carbonate hydroxide, known as the mineral
dawsonitc (NaAlICO3(OH);).

Na,CO, +2CO0, + H,0 -> 2NalICO, (3-6)

NaAlO, + CO, +211,0 ~> NaliCO, + AI(OIl), —> NadICO,(OH), + I1,0 G-7)

Dawsonite is formed in natural systems from the precipitation of alumina at ncar-ncutral
conditions. Dawsonitc has an acicular crystal habit,'® making it difficult to separate, deliquor,
and dccontaminate, A scanning electron photomicrograph of dawsonitc is shown in Figure 13.
Thus, dawsonitc is not a preferred method to crystallize alumina in Hanford waste.

7 D. L. Herting, “Fractional Crystallization of Waste From Tank 241-S-112,” July 2005.

'® Frec hydroxide is in addition to hydroxide bound to aluminum as AI(OH)," ion.

1% “I1ydrothermal Synthesis and Thermodynamic Analysis of Dawsonite-type Compounds,” Zhang, X., et al. Journal
of Solid Stat¢ Chemistry, 177 (2004) 849-855,
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Figure 13. Scanning Electron Photomicrograph of Dawsonite (U.S. Patent 5,997,836).%

38 PARTIAL NEUTRALIZATION WITH NITRIC ACID

Nitric acid (HNOj;) may be used in place of CO; for partial ncutralization of the excess free
hydroxide for increasing sodium salt yield.

NaOH + HNO, —> NaNO, + I1,0 (3-8)

As in the casc of carbon dioxide, the reaction liberates heat, and the temperature rise may be
moderated by the addition of water in highly concentrated systems.

Rapid ncutralization with nitric acid can also cause alumina gel formation. Thus, it is important
to determine the extent of neutralization that will maintain alumina solubility. However, the use
of nitric acid instead of carbon dioxide reduces the likelihood of dawsonite formation.

3.9 SOLUBILITY PRODUCT CALCULATIONS

Equilibrium models allow prediction of saturation of species and the excess amount that is
crystallized during evaporation. In general, solubility of a species follows the “the law of mass

2 U.S. Patent 5,997,836, Alkalai Aluminum Complex Hydroxide Carbonate Salt, and a Process for Producing Said
Salt and Its Uses, Sato, T.; Komatsu, Y.; Higuchi, K.; Kondo, M,; Tatebe, A.
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action”. When applicd to crystallization, the law balances the rates of dissolution and
precipitation. For the reaction:

Ba*? + 80, ¢ BaSO,(s) (3-9)

The reaction has achicved equilibrium once the forward (precipitation) and reverse (dissolution)
ratcs have become cqual. The equality is quantificd in terms of a solubility product in which the
ionic concentrations are raised to their stoichiometric coefTicients. Using the above reaction:

K =[Ba"]|s0,? |=1.07835x10" (3-10)
This solubility product is applicable to only slightly soluble salts in highly dilutc (or “idcal™)
solutions. For concentrated solutions, activity-corrected solubility products arc used to adjust the
cquation for intcrionic intcractions. Activity-corrected solubility products usc activity

coeflicients (¥) to adjust ionic concentrations for the “active™ and “inactive™ fractions of ions in
solution. For the reaction®

6Na* +250, + CO,”> & Na(S0,),CO,(s) (3-11)
The activity corrected solubility product is:
K= {}’NaNaH}ﬁ 30,804_2}2 co,CO.a‘z} (3-12)

Activity cocfTicients arc correlated from experimental data of vapor pressure, freczing point,
and/or osmotic measurcments from simple and multi-component solutions. They are strongly
dependent upon concentration of all ionic specics in the particular solution. The above activity-
corrccted solubility product can be abbreviated to the following form:

K =fay,.}* {750." } 2 {aco," } (-13)

Or more gencrally:
K=Ta," (3-14)
Where ¢ is the species activity (activity cocfficient x concentration) and vi is the stoichiometric

cocfficient. Further, the extent of saturation may be expressed as a saturation ratio (S) which is
the ratio of the calculated to the saturated solubility product.

#! For simplicity, fully dissociated ions are used in this study. Actual ionic speciation may include partial
dissociations and/or neutral species:

Na'! + COy? «+ NaCO;"

Na''+ 5047 «— NaSO,"’

Na'' + NOy' — NaNO;*
For crystallizations, the convention is to use fully dissociated species in the precipitation reactions, This pushes the
above reactions to the lefl, so that quantities of partly dissociated species may be disregarded in this study. However,
the partial dissociations are included in to the calculation of ionic strength.
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S = Keatd Ksar (3-15)
For unsaturated solutions S<l1
For saturated solutions S=1
For supersaturated solutions S>1

Activity-corrected solubility products are species and model dependent. They are developed for a
specific sct of specific chemical equations for a limited temperature range. For the
crystallizations of intcrest, Tablc 7 is a set of solubility products at 40°C.

Table 7. Solubility Products at 40°C.

Species K
Na,{S0,);CO;(5) 1.007x10?
Na,FSO4(s) 4.458x10™
Nz,COy1H,0(s) 7.108x10"!
NaNO,(s) 4.625x10'
NaNO;(s) 1.579x10'
Na,ALOs2%1:0(s) 1.156x10*
Al(OH);(s) 9.429x102

The units for concentration for these solubility products arc molality? (g moles solute/1000 g
H,0).

lonic strength, /, is a measure of the interionic effect resulting primarily from electrical
attractions and repulsions between ions. It is defined by the equation:

1=%gqa’ (3-16)

Where ¢;is fonic concentration in moles per liter and Z; is its ionic charge. For Hanford waste,
where sodium is the dominant cation, ionic strength can be roughly approximated by the aqueous
sodium concentration.?

22 Using molality units, the molality for H,O is constant (55.5 moles H,0/1000 g H,0), so that water concentration
is removed from the calculation of water activity. In these units, the activity of water is equal to the water activity
coeflicient (0:20= Yir20)-

2 In reality, the sodium is speciated into several ionic and non-ionic forms (i.e. Na*!, NaCO;™', NaSO,"!, NaNO,% so
that calculation of ionic strength is not straightforward.
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To illustrate the effects of ionic activities and solubility products on sodium salt yicld during
crystallization, several examples in Appendix E depict batch evaporative crystallizations of
sodium salt systems. Thesc systems arc similar to those found in Hanford wastc.

3.10 PRODUCT DECONTAMINATION

‘The concentrations of soluble radionuclides in feed liquor can increase by a factor of ten in the
crystallizer, The extent of concentration is approximately?! equal to the inverse of the sodium
yield. Thus, a 90% sodium yield increases the concentration of cesium from 0.2 Ci/L in the feed
to 2.0 Ci/L in the crystallizer.

The bulk of the radioactive contamination is removed from the crystallizer by the purge stream
and depending on the sodium yicld, the purge stream flowrate ranges from 10 to 50% of the feed
rate. The remaining contamination is carried with the crystal product to the scparation system.

Radioactive contamination of product crystals can occur in two forms: interstitial contamination,
which is due to soluble radionuclides in interstitial liquor, and mother liquor inclusions, which
occur duc to crystal imperfections. Mother liquor inclusions arc usually caused by rapid crystal
growth ratcs, typically due to extreme supersaturation, Interstitial contamination is caused by
entrainment of liquor with the crystal cake.

To remove interstitial contamination, mother liquor is separated and washed from the filter cake,
So, the extent of decontamination is proportional to the extent of deliquoring. To achicve the
highest degree of decontamination, highest extent of deliquoring is required. Centrifugation
offers the highest extent of deliquoring and for this study interstitial liquor is assumed to be
reduced to 10% of the cake mass. This is conservative since industrial applications of sodium salt
centrifugation typically reduce interstitial liquor to 5%,

To further reduce interstitial contamination, the crystal cake is washed during the centrifugation
process to displace contaminated liquor with clean liquid. The extent of decontamination during
the wash process may be estimated by:

D =1-(1/(1+W/L))" (3-17)

Where 2 is the fraction of residual contamination, » is the number of wash stages, and W/L is the
ratio of wash liquid to interstitial liquor. This calculation assumes that the wash liquid is well-
mixed with the interstitial liquor®®, and that the residual liquor is equal to the initial interstitial
liquor amount. Also, wash liquor must have lowcr contaminant concentrations than the
interstitial liquor.

# The concentration increase is higher if the initial feed is not saturated in sodium salts.

% Garett, D.E. “Soda Ash”, Van Nostrand Reinhold

2 Typically, the wash liquor is not we!l mixed with interstitial liquor in a centrifuge. Instead, plug flow displaces
interstitial liquor with wash liquid with little mixing between the liquids. Thus, plug flow displacement has a higher
decontamination efficicncy than equilibrium models predict.
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Thus, a three stage washing process using a wash solution that is four times the interstitial liquor
mass has a theorctical decontamination of

D=1-(1(1+4))’=99.2% (3-18)

A graph of residual contamination as a function of wash to liquor ratio and the number of wash
stages is shown in Figure 14.

Figure 14. Interstitial Decontamination.
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As shown in the graph, a W/L ratio of 1, the number of wash stages has a greater effect on the
extent of decontamination than the amount of wash liquid. Thus, given sufficient wash volume
and washing stages, there is no theoretical limit to the extent of interstitial decontamination that
can be achieved by displacement of interstitial liquor by wash solution.

Idcally, wash liquid is saturated with sodium salts to reduce product dissolution.?” This wash
solution may be made from product liquor and the spent wash liquor may be recycled to the
evaporator to recover the sodium salts. By this method, no additional sodium salts are added to

z Theorctically, a three component (NaNO;, Na,CO;, Na;SO,) saturated solution is not possible 1o formulate.
However, a solution approaching saturation will reduce dissolution during washing.
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the system. However, recycling of spent wash liquor requires a proportional increase in capacity
of the crystallization system to evaporate, recrystallize, deliquor, and decontaminate the recycle

strcam.

To maintain alumina solubility in the interstitial liquor during the first wash, a 10 wi% sodium
hydroxide solution may be required. Sodium hydroxide maintains the pH of the interstitial
liquor to prevent alumina gel formation in the centrifuge cake.

An cxamplc of centrifuge cake decontamination is shown in Figure 15. The initial cake contains
50% liquor and a cesium concentration of 0.178 Ci/5 M Na. The first centrifuge wash stage
deliquors the cake to 10% moisture and washes the cake with saturated solution. In this case, the
wash solution to cake liquor ratio is 3. Successive wash stages reduce contamination by
displacing interstitial liquor with wash solution.

Figure 15. Centrifuge Cake Decontamination,
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In this casc, the extent of decontamination meets the required specification (0.05 Ci/S M Na)
afier one wash stage. It meets the desired specification (0.0012 Ci/5 M Na) aficr three washing
stages. To mect the required decontamination for WTP LAW feed (0.00013 Ci/5 M Na), five

stages of washing are nccessary.

This example is based on 10% cake liquor and perfect mixing during the wash stages, which are
conservative estimates. However, it does not consider contamination due to crystal inclusions.
Crystal inclusions are minimized in the full scale system by intensive mixing and a controlled
crystal temperature profile/evaporation rate,
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3.11 CRYSTALLIZER RECYCLE RATE

Industrial crystallizers typically have high recycle rates. That is, hydrocyclonc overflow and
spent wash solutions arc continuously recycled to the crystallizer body, and a minimum purge
stream is maintained to remove impuritics.

However, because Hanford waste contains high solubility sodium salts (NaOH & NaAlQ;), a
higher purge to recycle rate must be maintained to constantly remove these salts from the
crystallizer circuit. Sodium hydroxide and sodium aluminate reduce water activity and vapor
pressurc and increase viscosity, density, and ionic strength of the liquid phase.

Following is a graph of yicld versus recycle ratio. In this simulation, DST crystallizer was
continuously carbonated to maintain the saturation ratios of AI(OH); and NaAlO;-2% H,O to be
cqual®® (scc Figure 16) throughout the run. By this method, alumina solubility is maximized.
Solids density in the slurry takcoff was 40%.

Figure 16. DST Recycle Ratio Versus Yield
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As shown by the graph, sodium, sulfate, carbonate, nitrite, and nitrate yields increase with
increasing recycle up to a ratio of 1.14:1 Recycled Na/Feed Na. Beyond this point, alumina
solubility is reached, and gibbsite and sodium aluminate are supersaturated. Thus, for this
system, the maximum theoretical recycle ratio is 1.14 before maximum alumina solubility is
reached.

The effect of the recycle ratio on physical properties is shown in Figure 17,

* The saturation ratios for gibbsite and SAH are both first order with respect to aluminum,
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Figure 17. DST Recycle Ratio Versus Physical Propertics.
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Liquid density incrcases from 1.6 to 1.9 g/mL; viscosity increascs from 6.0 to 7.8 cP; ionic
strength increases from 12.8 to 15.8 as the recycle ratio is incrcased from 0.27 to 1.33. Thus,
increasing the recycle ratio increases liquid density, viscosity, and ionic strength by recycling
high solubility salts. Thesc propertics hinder diffusion and liquid-solid scparability. The
maximum liquid propertics that allow separation may be reached before the theoretical
maximum recycle rate. The maximum liquid propertics for liquid-solid scparation must be
determined by pilot plant studies.

Increasing the recycle rate also increases the required capacity of the crystallizer system as
shown in Figurc 18. As the recycle ratio is increascd from 0.27 to 1.33, the evaporation rate
increases by 35%. The required volume to maintain the same residence time, determined by the
slurry take-off rate, is increased by 94%. Thus, the extent of recycle must be factored into the

design of the full-scale unit.
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Figure 18. DST Recycle Ratio Versus Crystallizer Capacity.
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4.0 LABORATORY CRYSTALLIZATION EXPERIMENTS

Laboratory crystallizations of Hanford waste simulants performed at Georgia Tech were
thermodynamically modcled to plan the operating conditions, the extent of evaporation, the
saturation points, and the theoretical yiclds. Initially, lab crystallization experiments followed the
same opcrating path as the evaporation surveys in the examples in Appendix E. In laboratory
batch crystallization, the feed is charged into the vesscl, vacuum is drawn, and heat applicd by
external heating. The batch is boiled down until the crystal slurry reaches the maximum slurry
density (or suspended solids) that can be maintained in the vessel. Lab crystallizations were
terminated afier the slurry density reached ~35 wit% solids. At this point, the condenser is turned
to total reflux, vacuum is broken, and the charge is empticd from the vessel to a separator.

Becausc of the low sodium yield at 35 wi% solids, filtratc and/or wash liquor were recombined
and evaporated in a sccond stage of crystallization. This mcthod allowed higher sodium yicld
while maintaining a maximum slurry density of 35 w1% per stage. The conditions of the
crystallization steps (i.c. temperature, pressure) may vary from stage to stage to improve the
yicld or quality of the crystal fractions. As previously discussed, higher temperatures favor
burkeite and sodium monohydratc yicld; lower temperatures favor sodium nitrate yicld.

A second method, semi-batch crystallization, was developed to solve scveral problems
associated with laboratory batch crystallization. In semi-batch crystallization, evaporations arc
performed incrementally, and the vessel is incrementally recharged with feed to refill the vesscl.
By this mcthod, the amount of solid accumulation on the vessel walls is minimized. An example
of a laboratory two-stage semi-batch crystallization simulation flowshect is shown in Figure 19
with the mass balance of the flowsheet shown in Table 8.

In this flowsheet, the first crystallization stage is operated at 40°C and evaporated to 35 wt%
solids. The sccond crystallization stage is operated at 50°C and ¢vaporated to 35 wt% solids.

Each stage is filtered and washed using a saturated solution. Int laboratory crystallization,
filtration typically deliquors the product to 20% liquid in the filter cake. The wash solution is
saturated with the product salts, and the amount of wash solution is cqual to the mass of the
crystal cake. The final product contains 20% liquid by mass.

Two-stage crystallization was found to be necessary to obtain the required sodium yicld using a
maximum slurry density of 35 wt%. In addition, two-stage crystallization allows tailoring of the
operating conditions and residence times for the relative abundance of the sodium salts in the
feedstock. For a production-size process, downstream equipment such as hydrocyclones and
centrifuges must be tailored for the dominant crystal type from each crystallizer.

Details of the laboratory crystallization experiments (equipment, testing protocols, observations,
results, etc.) can be reviewed in the Hanford medium/Low Curiec Waste Pretreatment Project —
Phase I Laboratory Report (RPP-RPT-27239).
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Figure 19, Laboratory SST Early Feed Simulation.
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5.0 OPERATION MODES

5.1 BATCH EVAPORATIVE CRYSTALLIZATION

Batch cvaporative crystallization is similar to the methods that were initially practiced in
laboratory experiments. In batch crystallization, the feed is charged into the vessel, vacuum is
drawn, and heat is applied. The batch is boiled down until the crystal slurry rcaches the
maximum slurry density that can be suspended in the vessel. The charge is then transferred to
scparation cquipment for deliquoring and washing.

Because of the low yicld in a one-pass batch crystallization, the separated filtrate and spent wash
may be returned to the crystallizer, and the process is repeated. Depending on the required yiceld
and the maximum slurry density, the number of batch crystallizations may be between two and
five passcs.

Batch crystallization has several disadvantages over continuous crystallization. Initially, the
solution is undersaturated and there are no sced crystals present. Thus, upon evaporation, the
solution may overshoot saturation before crystallization occurs. This results in rapid nuclcation
and crystal growth that can cause impurity inclusions which cannot be removed by washing.

Sccondly, in batch crystallization, there is no classification and recycle of fine particles. In multi-
component crystallization, this may result in bimodal size distribution. Also, finc particles are
difficult 1o scparate, deliquor, and decontaminatc.

Thirdly, as obscrved in laboratory crystallization, as the batch is boiled down, dry wall surface
arca increases, and solids may accumulate on the walls. Crystals formed by thin-film evaporation
on the walls may not have the same composition or size distribution as crystals formed in the
mother liquor and the thin-film crystals may not be equilibrated with the bulk of the solution.

52 SEMI-BATCH CRYSTALLIZATION

To overcome some of the disadvantages of batch crystallization, a semi-batch mcthod was
developed for laboratory crystallization. In semi-batch mode, the crystallizer is initially charged
with solution, vacuum is drawn, the vessel is heated, and a fixed amount of condensate (~20% of
the liquid volume) is evaporated. At that point, the vessel is refilled with fresh solution. The
incremental evaporations and rccharges are continued until a slurry density of 30 wt% is reached.
Then, the slurry is filtered to scparate the product from residual liquor. The technique may be
continued to a sccond semi-batch stage to increase the sodium yicld.

Semi-batch crystallization can increase crystal size by dissolving fines and wall accumulation
during recharge. Fresh solution is undersaturated, so it will dissolve crystals from the prior
cvaporation. Because of higher surface arca to mass ratio, fine crystals dissolve faster than coarse
crystals, therefore the remaining coarse crystals can provide sced crystals for the next
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cvaporation stcp. By this method, the extent of supersaturation is decreased, the size distribution
is increased, and the potential for contaminant inclusions decreases. Semi-batch crystallization
also reduces the exposed arca of the crystallizer wall and thereby reduces solids accumulation.
Any solids buildup on the walls is redissolved upon recharging the vessel.

Carbonation may be carried out afier the initial batch is charged, as well as aficr cach subscquent
recharge. By this method, excess hydroxide can be timmed while alumina solubility increases
duc to ionic strength increascs during evaporation. This method prevents alumina gel formation
by allowing the alumina to remain ncar the gibbsite phase boundary during the crystallization
proccss.

53 CONTINUOUS EVAPORATIVE CRYSTALLIZATION

Continuous cvaporative crystallization opcrates in steady-statc mode; feed material is constantly
fed to the crystallizer while steam, purge, and product slurry are constantly removed from the
crystallizer. The slurry density is held constant by varying the heat input and product withdrawal
rates. The crystallizer operates at a constant temperature and pressure.

By this mcthod, flow surges are taken out from down-strcam equipment and the amount of in-
process storage capacity is reduced becausc the entire batch is not discharged at once.
Hydrocyclones, clutriation columns, and centrifuges may operate continuously at their optimum
rates.

Continuous crystallization operates at a lower degree of supersaturation than batch
crystallization. In batch crystallization, the concentrations can overshoot the saturation points
before nucleation occurs. This may cause rapid crystal growth rates and impurity inclusions. In
continuous crystallization, crystal nuclei arc always present, so that the extent of supersaturation
is minimized.

For a continuous process, two crystallizers may be required; one for slow-growth retrograde-
soluble salts such as sodium carbonatc and sulfate and onc for fast-growth salts such as sodium
nitrate and nitritc. The first stage would crystallize sodium carbonate and sulfatc at elevated
temperature (~60°C) and long residence time (~3 hours) to increase crystal growth rates and
crystal sizes, reduce sulfate and carbonate solubility, and increase sodium yield.

The sccond crystallization stage would operate at reduced temperature (~40°C) and short
residence time (~30 minutces) to reduce sodium nitrate and nitrite solubility and reducc crystal
growth rates. By this method, the temperature and residence time may be optimized for each
crystallizer to increasce the yield and quality of the crystal fractions. This method has not been
demonstrated in the Phase I laboratory experiments; however, it is a necessary next step (pilot
opcration) before actual plant equipment can be sized and designed.
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6.0 PROCESS DESCRIPTION

6.1 PROCESS OVERVIEW

As noted in previous scctions, fractional crystallization can be sclective to sodium salts and
therefore has been chosen to be demonstrated as the preferred method of supplemental
pretreatment. Because of their abundance, sodium salts crystallize upon cvaporation long before
radioactive trace components cesium nitrate (CsNO;), sodium pertectnetate (NaTcOy), and
sodium jodide (Nal) reach their solubility limits.

Fractional crystallization parameters can be adapted to the feedstock such that low solubility
sodium salts (Na;CO;, Na;SOy) can be readily crystallized by evaporation and temperature
dependent salts (NaNQO;) may be crystallized by cooling and/or evaporation. Slow-growth
crystals (Na(S04):CO;) require more residence time than fast-growth crystals (NaNQO;).
Carbonation may be uscd to convert high solubility NaOH to low solubility Na,CO; for
crystallization.

As previously discussed, other processes may be developed in the future to improve fractional
crystallization yicld. Oxidation may bc used to convert sodium nitrite to sodium nitrate to reduce
total solubility of thc NaNO;-NaNO; system. Alumina may be crystallized prior to sodium salt
crystallization to reduce the sodium hydroxide requirement for alumina solubility.

For al! of these unit operations (evaporation, carbonation, cooling, ctc.) the fractional
crystallization system must be designed to adapt to the feedstock to achicve high yicld and
product decontamination. For these reasons, a two-stage forced-circulation vacuum crystallizer
system has been sclected. The two-stage system has the flexibility to allow high- and low-
temperature operation and it allows feed to be applicd to onc or both stages. It also allows the
recycle of fine crystals to improve residence time and crystal size and allows tailoring of
dcliquoring equipment (i.c. centrifuges) for the dominant crystal types produced from cach stage.

The crystallizer system will ideally operate as a continuous process that provides continuous
mecasurcment and control of process variables to create and maintain constant growing conditions
for the crystal products. Particle size distribution, radioactivity, liquid composition, flow rates,
levels, temperatures, and pressures will be measured. Steaming rates, wash rates, and recycle
rates will be continuously controlled to maintain stcady opcration within the desired operating
rangcs.

Idcally, continuous opcration allows minimizing the above ground inventory of radioactive waste
because feed material is continuously fed from the tank retrieval facility while product is
continuously pumped to the BV receipt tanks. Purge is continuously transferred to an existing
DST. This minimizes above-ground storage volumes of radioactive waste solutions and is
similar to the existing 242-A Evaporator opcrations; however, the continuous flow to and from
the FCS requires further evaluation once the interfacing tank farm systems are more fully
defined.
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In the cvent of a process interruption, the crystallizer system will be put on total recycle. The
product will be dissolved in condensate and recyeled to the feed tank while the purge may be
continuously removed or recycled to the feed tank. The method of total recycle keeps the
crystallizer system on-linc and opcrating at stcady-statc during interruptions in feed or product
receiving systems.

Utilitics, such as stecam, cooling water, and process water will be supplied by package (“skid
mounted”) units. Process water supplicd to the process, cooling tower, and the boiler will be
conditioncd by a demincralizing system to remove hard water compounds (Ca, Mg, Si). This will
reduce scale deposits on heat transfer surfaces and minimize the formation of minerals in the
process. Non-contaminated condensate, not uscd in the process, will be returned to the boiler to
minimize waste water sent {o the Effluent Treatment Facility (ETF).

Workers” exposure to radioactivity will be minimized by incorporating As Low As Reasonably
Achievable (ALARA) principles in the design. The processing equipment used to handle and
treat tank wastes is housed in shiclded structures to reduce radiation exposure to workers. The
structure also protects equipment from damage duc to environmental conditions and provides an
encloscd arca to perform maintenance. Tanks that are used to contain tank wastes or treated tank
wastes will be double contained (as applicable) to prevent inadvertent discharge to the
environment and include shiclding to meet ALARA considerations.

The fractional crystallization system proposcd will operate for two years in a pilot demonstration
mode prior to shifting to full production capacity (up to 5 gpm) to supply a Production BV
Facility. During the pilot demonstration modc, the system will operate on cold simulants to
establish operating parameters and determinge the need for modifications to process equipment. In
the “hot™ demonstration mode, actual tank wastc will be processed to atlow feed to the
Demonstration BV Facility to vary from 0.76 to 2.2 gpm.

6.2 PROCESS FLOW DIAGRANMS

Process Flow Diagrams (PFDs) containing preliminary mass balances for SST and DST wastes
arc in shown in Figures 5, 6, and 7, respectively. The basis for the flowsheet mass balances is

5 gpm of 5 M Na in the product stream to supplemental treatment (BV). Mass balances on the
flowshects are in English units (lbm). Mass balances in metric units (g & g-mol¢) normalized to
1000 g feed are given in Appendices A, B, and C,

The simulant fecd chemistry is based on the SST carly/late fecd and DST chemical
concentrations (sec Section 2.1, Table 2 and Tablc 3). For simplification and model limitations,
the mass balances arc based upon one-stage crystallization. Thus, the required capacity for each
strcam of the proposed two-stage system is one-half of the mass balance valuc. The mass
balances were developed using ESP/MSE thermodynamic models.

Each flowshceet is based on the maximum theoretical yield at the maximum alumina solubility,
This technique is used to determine the maximum radiologica! dosc rate, The processes usc
continuous carbonation fo maintain the saturation ratios of gibbsite and sodium aluminate to be
ncar-cqual and ncar-saturated at 40°C,
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Flowshect yiclds and cesium (Cs) decontamination are compared to the required and desired
targets in Table 9. Actual physical propertics (viscosity and liquid density) may limit the yield to

less than the theoretical amount shown in the flowshcets.

Table 9, Theoretical Flowsheet Yields.

PRETREATMENT

MINIM UM

SST EARLY

SST LATE

OUTPUT CRITERION | ACCEPTABLE | TESiteD FEED FEED |0 ool oo
STREAM REQUIREMENT " FLOWSHEET | FLOWSHEET ‘ -
¥Cs aclivity <0.05 CV/L <0.0012 Ci/L 0.0011 CV/L 0.0008 Ci/L 0.0029 Ci/L
Na™ 5 M (#/- 20%) SM (- 10%) 5M SM SM
concentration
. Contain at least
Contain at least o *
BV FCED Na'split | 50%of the Na' in | 207 of the Na 82.1% 88.77% 71.5%
. in the input
the input stream
stream
. R
Contaminants TRU concentration cTonl;,cnlration
must be less than N/A* N/A N/A
of concem 100 nCy/ must be less than
& 100 nCi/g
Sulfate:sodium <0.01 0.0022 0.0030 0.01%+ 0.0018
mol¢ ratio
.\VTP FEED Must meet DST Must meet DST
storage storage
DST storage | requirements and | requirements and YES YES YES
pipcline transfer pipeline transfer
requirements requirements

* N/A = TRU are not included in the recipes.

** Although sulfate yicld is 99.9%, high Na® yicld increases the sulfate to sodium mole ratio.

Alumina solubility is maintained throughout the flowsheets. A 10 wt% NaOH solution is used
for the first wash to maintain the pH of the interstitial liquor to prevent alumina gel formation.
This wash solution adds 2.8% to the total sodium at the maximum sodium salt yicld. The Cs DF,
defined as ([Cs)/5 M Na Feed)/([Cs)/S M Product)), is 54.9 for the SST Early Fecd Flowshect,
21.4 for the SST Latc Feed Flowsheet, and 124.0 for the DST Flowsheet.

Tank Farm Waste Storage and Transfer Chemistry Requirements (Table 2) for the purge strcams
arc met by bypassing a small fraction (0.8%) of the feed stream to the purge tank. The bypass
increases the free hydroxide concentration in the purge to 0.3 M for corrosion control.

Chemical oxidation can potentially improve sodium yield by reducing ionic strength, liquid

density, and viscosity by converting sodium nitrite to sodium nitrate and reducing total NaNOy
solubility. However, at this point, this technology has not been developed for this process and it
is not included in the current flowsheets.
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6.3 PROCESS OPERATIONS

Chemical characterization data of the sclected feed will be used to optimize the operation of the
FCS. The process will be thermodynamically modeled to determine flow rates, temperatures,
and pressures of the system to achicve optimum yiclds and decontamination of the product. The
scction below describes the currently proposed process system operation.

Dissolved saltcake and supernatant liquid are retrieved from Hanford underground storage tanks
by Tank Farms and scnt to the FCS feed tank for pretrcatment. Prior to transfer, the feed is
filtered to remove suspended solids.

Referring to a process flowshceet (Figures 5, 6, and 7) the feed tank provides surge capacity for
fluctuations in transfers from Tank farms. The feed rate to the crystallizer system is balanced to
maintain the required production rate (0.76 to 5.0 gpm of 5§ M solution) to BV. Depending on the
concentration of the fecd solution and the sodium yield, the feed rate may be higher or lower.

From the feed tank, solution is pumped to the first and/or sccond stage crystallizer and the purge
tank. Depending on sodium yield and extent of carbonation, a small portion of the fecd may
bypass the crystallizers to provide the purge solution with additional sodium hydroxide and/or
sodium nitrite to mect DST Storage and Transfer Chemistry Requirements.

The bulk of the feed solution enters the crystallizer(s) in the recirculation piping where it is
blended with crystallizer slurry. The recirculation stream has a much higher flow rate than the
feed strcam. By blending in the feed stream, minor variations in the feed stream composition
make little or no impact to the composition of the large recirculation stream.

The recirculation stream is heated by the external heat exchanger (reboiler) and provides the heat
of evaporation to the crystallizer by heating the recycle stream. The reboiler is heated by low
pressure stcam on the shell side of the heat exchanger. To reduce the possibility of
contaminating the boiler in the event of a tube failure, an intermediate heat exchanger may be
uscd.

The recirculation stream enters the crystallizer body through a draft tube in the center of the
crystallizer body. At this point, back pressure from the recirculation line is released, water boils
off, and the solution becomes super-saturated in sodium salts. Crystal nuclcation and growth
occur in this region. The center draft tube design allows crystal growth to occur in the
crystallizer body rather than on the crystallizer walls. Recirculation of “fines™ (small crystals)
from the hydrocyclones provide sced crystals for the crystal growth.

Carbon dioxidc is continuously fed to a “carbonator” in a crystallizer recycle line where the
recycle line provides sufficient back-pressure to allow carbon dioxide to react with the waste.
Because the crystallizer operates under vacuum, CO; injection in the crystallizer would result in
ofT-gassing through the condenser system if the back pressure is not maintained. The rate of
carbonation will be determined by thermodynamic modeling.

Above the liquid interface, a de-entrainment section (“top hat”) on the crystallizer allows
discngagement of foam, solid particles, liquid droplets, and acrosols. Foam is disengaged from
the steam in the lower section with the aid of a defoamer solution. Solid particles and liquid
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droplets arc disengaged with the usc of bubble trays with counter-current condensate flow.
Acrosols are discngaged with the use of mesh pads (“mist climinators™) in the top section of the

crystallizer.

Overhcad steam is condensed by a scries of condenscrs. The first stage condenser uscs cooling
water to condensce the bulk of the stcam at ambient dew point temperature. A sct of two vacuum
jet steam ejectors arc used to pull vacuum on the system and each ejector has a condenser.
Condensate from the overhead condensers flows to a condensate receiver which is used to supply
condensatc to the wash and dilution processcs.

Slurry from the crystallizers is processed to scparate and decontaminate product crystals from the
mother liquor. A hydrocyclonc is used to scparate coarsc (“product™) crystals from finc (*sced™)
crystals and concentrate the underflow slurry to ~50 wi% solids. Overflow slurry, containing the
sced crystals, is recycled to the crystallizer through the spent wash tank.

The underflow stream is deliquored and washed in a multi-stage centrifuge. The deliquoring step
expresses most of the residual liquor, which contains the highest concentration of cesium, from
the crystal cake, It may be forwarded to the next crystallization stage or the purge tank. Washing
steps displace interstitial liquor from the crystal cake. The first wash may use a 10% NaOtH
solution to prevent alumina gel and reduce crystal dissolution. The second wash may use
condensate or recycled 5 M product to remove most of the residual cesium. Spent wash from the
centrifuge is recycled to the crystallizer through a spent wash tank.

Crystal cake is discharged from the centrifuge through a chute to the § M Product Tank where it
is dissolved in condensate to make a 5 M sodium salt solution for transfer to BV.

Liquor from the dcliquoring stage is routed 1o the purge liquor tank. The purge liquor tank
accumulates the cesium rich liquid prior to transferring it to Tank Farms for WTP treatment.

The purge liquor is adjusted for composition using “bypassed feed” and transferred to a receiving
DST in Tank Farms.

All process operations will be controlled from a modular control room that is detached from the
process cquipment building.

6.4 MAJOREQUIPMENT LIST

The major process system components are listed below and do not include all the support
systems or equipment that may be required in the final facility. This information will be
developed as design activities progress. All materials that contain, may contain, or contact tank
waste or treated waste should be constructed of 304L stainless steel or other compatible
corrosion resistant alloys that will allow use of a wide range of deccontamination or descaling
solutions. Equipment sizes and required operating parameters will be based upon data obtained
in pilot plant operations.
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. Process Equipment

CO; Storage Tank

10% NaOH Storage Tank

Fced Tank

Carbonators

First Stage Crystallizer

Sccond Stage Crystallizer

First Stage Crystallizer Reboilers
Sccond Stage Crystallizer Reboilers
First Stage Crystallizer Condenscr
Sccond Stage Crystallizer Condenser
First Stage Steam Jet Vacuum Pump
Sccond Stage Steam Jet Vacuum Pump
Condensate Tank A

Condcnsate Tank B

First Stage Hydrocyclonc

Second Stage Hydrocyclone

First Stage Centrifuge

Sccond Stage Centrifuge

5 M Product Tank A

5 M Product Tank B

Spent Wash Tank A

Spent Wash Tank B

Purge Liquor Tank

Utility Equipment

e Steam Gencerator
e Cooling Watcr System
HVAC

6.5 PROCESS EQUIPMENT

6.5.1 CO; Storage Tank

A liquefied carbon dioxide storage tank provides a continuous supply of CO; to carbonate the
crystallizer slurry. The tank will be provided by a CO; supplier and equipped with an
evaporation system to vaporize the liquid and regulate the gas supply pressure to the process.
The storage vessel must be large enough to supply the FCS between deliveries. The CO; storage
tank does not require shielding or secondary containment.
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6.5.2 10% NaOH Storage Tank

A NaOH storage vessel provides a continuous supply of 10% sodium hydroxide (“caustic™)
solution for centrifuge wash. The storage vessel must be large enough to treat the waste between
dcliveries of additional solution. Caustic will be received in 50wt% solution; it will be diluted to
10wt% using non-contaminated condensate or treated water. The 10% NaOlH storage tank will
require sccondary containment for spill prevention, but docs not require radioactive shiclding.

6.5.3 Feed Tank

Tank Farms continuously transfers tank waste to the feed tank(s). The feed tank provides surge
capacity for fluctuations in feed supply from Tank Farms and provides continuous feed to the
crystallizers. The tank has a cone bottom to prevent solids accumulation and mixing is provided
by rccirculating the tank contents through the fced pump.

The headspace of the feed tank and all other waste storage tanks may be continuously purged
with compressed air to prevent flammable gas accumulation. Exhaust air from the fank is routed
to the facility HVAC system.

6.5.4 Carbonator

Carbon dioxide is injected into the “carbonator” in the crystallizer recycle stream. The
carbonator increases sodium salt yicld by converting highly soluble sodium hydroxide tnto low
solubility sodium carbonate. In the current process, carbonation will be used to trim “excess”
NaOH only to avoid alumina gel formation.

The configuration of the carbonator will be determined in pilot plant tests. It will be designed to
maximize gas-liquid contacting and minimize crystal attrition (breakage).

The feed rate of CO; will be determined by thermodynamic modeling, The extent of CO;
reaction during ncutralization (an ¢xothermic reaction) will be measured by temperature risc
across the carbonator.

6.5.5 Crystallizers

The FCS crystallizers provide the conditions for sodium salt crystallization by established
residence time and sclected temperature for optimum crystal growth, The volumes of the
crystallizers will be determined in pilot plant studies by the required residence time for growing
scparable crystals. The crystallizers arc currently proposcd as the draft tube baffle (DTB) type.

The crystallizers will be sized to produce a nominal maximum feed rate of § gpm of 5 M waste
solution to BV. The actual FCS influent feed strcam rate will vary depending on the
concentration of the feed and the crystallizer yield to produce a 5 M Na product stream.
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Pressurc in the first stage and sccond stage crystallizers is controlled by steam jet ejectors
producing sufficient vacuum to allow for sub-atmospheric boiling temperatures. The operating
pressures and boiling temperatures (saturated system) are controlled by the stcam ¢jector motive
stcam flow ratcs. By this method, the salt supersaturation and crystal growth rates may be
controlled.

Conditions in the crystallizers arc carcfully monitored and controlled to ensure stcady-state
operation and to cnsurc adequate crystal growth. The liquid levels in the crystallizers are
controlled to maintain adequate residence time and the discharge rate is controlled to achieve the
desired slurry density. The feed rates of tank wastes and the recycle rates to the crystallizers arc
monitored and controlled to maintain the liquid levels within specified ranges. The temperatures
in the crystallizers arc controlled by the heat input rate and the operating pressure. The overall
operating conditions are adjustcd to obtain the desired temperatures and residence times for
crystal growth.

To provide for potential foaming and/or frothing in the boiling liquid, the crystallizers will be
designed to allow for adequate vapor-liquid disengagement in the vapor headspace. If required,
a defoamer will be injected in the vapor space to break the foam. A wash ring will be provided
at the vapor-liquid interface to dissolve deposited salts and prevent accumulation of salts on the
vessel walls during normal operations. Demisters and bubble trays will be used in the
crystallizers to control the release of acrosols and spray nozzles will be used to maintain and
clcan the demisiers.

6.5.6 Crystallizer Reboilers

Crystallizer slurry is heated in the crystallizer reboilers to a temperature that is just above the
boiling point of the slurry at the crystallizer operating pressure. Back-pressure in the reboiler
circulation lines prevents boiling in the reboiler, but allows boiling as the slurry is discharged to
the crystallizer draft tubc.

The erystallizer reboilers use saturated stcam, or heated fluid from an intermediate heat
exchanger, on the shell side to heat the slurry and maintain the required evaporation ratc in the
crystallizer. To recover the condensate from the reboiler, it must drain into a vacuum condensate
recciver, where a pump is uscd to break vacuum.

The temperature differcnce between the steam and crystallizer slurry is kept low to limit the
icmperature risc in the heat exchangers. A temperature rise of two to three degrees Fahrenheit in
the slurry is adequate to evaporate water in the crystallizers. The small temperature risc limits
supersaturation of dissolved salts and prevents film boiling on the tube side of the reboiler. Film
boiling may causc precipitation of minerals on the tube surface.

A pump is uscd to circulate the slurry through the reboiler and return it to the crystallizer while
maintaining a strongly turbulent flow through the circulation line. The turbulent flow prevents
deposits in the pipeline and reboiler.
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6.5.7 Crystallizer Condensers

Water cooled condensers arc used to condense stcam from the crystallizer vapor streams. The
condensate from the condensers is collected in condensate tanks and used as process water as
nceded in the FCS.

Since the overhead stcam and condensate are at subatmospheric pressure in the condenscrs, the
condensate must drain through a barometric leg, or into a vacuum condensate recciver, where a
pump is uscd to break vacuum and return the water for process usc.

6.5.8 Vacuum Steam Jets

Two-stage steam jet cjectors are used to produce vacuums in each of the crystallizers and are
opcerated continuously while the FCS is in operation. The stcam will be supplicd by the auxiliary
boiler and sized to maintain the crystallizers® vacuums over a range of operating conditions,

6.5.9 Steam Jet Condensers

Condcnsers arc used downstrcam of each steam jet to condense the ¢jector stcam and entrained
vapor. Condensate is routed to the condensate tanks. Incrt gas (“non-condensables™) from the
stcam condensers is vented to the FCS HVAC system.

6.5.10 Condensate Tanks

Two condcensate tanks receive condensate from the first/second stage condensers and vacuum
cjector systems. The condensate is continuously reused in the FCS to dissolve the centrifuge
product to a 5 M solution. The condensate can be used to adjust the purge liquor concentration,
when necessary, to mect Tank Farms acceptance criteria. The condensate may also be used to
control deposits and clean the demister in the crystallizers or used as the initial wash material for
periodic decontamination of equipment. The condensate tanks are vented to the FCS HVAC
system,

Depending on the water balance of the system, a surplus or a deficit of condensate may occur,
Process water deficits arc made up by the process water system. Process water surpluscs arc
recmoved via tanker truck to the ETF aficr any required chemical analysis,

6.5.11 First Stage Hydrocyclone

The first stage hydrocyclone receives product slurry from the first stage crystallizer. The
hydrocyclone increases the slurry density and separates coarse crystal from fines. The coarse
slurry underflows the hydrocyclone and discharges to the first stage centrifuge where the crystals
arc washed and substantially dewatered. The overflow is recycled to the first stage crystallizer
through the spent wash tank.
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6.5.12 Second Stage Hydrocyclone

The sccond stage hydrocyclone receives product slurry from the second stage crystallizer and
opcerates in the same way as the first stage hydrocyclone. The coarse underflow is directed to the
sccond stage centrifuge, the fines overflow is recycled to the sccond stage crystallizer through
the sccond stage spent wash tank.

6.5.13 Centrifuges

The centrifuges receive underflow slurry from the hydrocyclones. The slurrics are deliquored
and washed in the centrifuges to remove most of the interstitial cesium contamination. In the
deliquoring step, excess solution is expressed from the crystal cake. This liquor, containing the
bulk of the cesium, may be routed to the sccond stage crystallizer or transferred to the purge
tank.

A 10% NaOH wash solution may be used for the first wash fo maintain alumina solubility and is
roughly equal to the volume of the interstitial liquor. The second wash may be condensate or
recycled 5 M product liquor, Spent wash solution is routed to the spent wash tank for recycle to
the crystallizer.

The centrifuges will be designed for remote operation and casc of maintenance. The operation of
the centrifuges is monitored and controlied by the FCS central control system. The centrifuges
may be decontaminated with process water or clean condensate when repairs or maintenance is
required with the flush solution routed back to the process.

6.5.14 5 M Product Tanks

Centrifuge cake is discharged by chute to the 5 M Product Tanks where condensate is added to
dissolve the solids to a 5§ M solution. Mixing is provided by the reeyele line and product
concentration is controlled by solution density. Product solution is transferred to the BV product
tank continuously at a nominal ratc of up to 5 gpm. The 5 M Product Tanks have conc-bottoms
to prevent solids accumulation and arc vented to the FCS facility HVAC system.

6.5.15 Spent Wash Tank

Spent wash water and hydrocyclone overflow are routed to the Spent Wash Tanks which act as
atmospheric pressure receivers for the discharges from these sources, The discharge from the
Spent Wash Tanks is recycled to the crystallizers. The Spent Wash Tanks have cone-bottoms to
prevent solids accumulation and arc vented to the FCS facility HVAC system.

6.5.16 Purge Liquor Tank

The Purge Liquor Tank receives liquor from the centrifuges and discharges to the designated
DST via the Tank Farm piping system. To meet the Tank Farms acceptance criteria, some of the
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fced strecam may be bypassed to the Purge Tank. The Purge Tank has a conc-bottom to prevent
solids accumulation and ts vented to the FCS facility HVAC system.

6.6 CONTROL LOGIC

The FCS will be controlled to maintain steady-state operation of the entire crystallizer system.
All process variables, including temperatures, pressurces, flow rates, tank levels, etc. will be
measurcd. Input flow rates (waste feed, CO; feed, steaming rates) will be controlled to maintain
process variables at set point values.

The control system will allow for manual operation during startup, shutdown, and abnormal
operating conditions, but will operate in an automatic mode during normal conditions. In the
cvent of system failure, an emergency shutdown mode will be provided.

Initially, the feed tank and crystallizer will be charged with fresh solution, then vacuum will be
drawn on the system before feed is heated in the reboilers. Operating pressure in the crystallizers
will be adjusted by control valves in the steam supply to the cjectors.

Operating temperature of the crystallizer will be allowed to float; the solution will seck its own
boiling point as the concentration of dissolved salts increases at the fixed operating pressure. The
operating pressure and resultant temperature may be changed during operation to increase crystal
growth ratc and/or to reduce solubilitics.

Operating levels in the in-process storage vessels (feed tank, condensate tank, 5 M product tank,
purge tank) will be controlled by the discharge rates from the tanks.

6.7 COMPATIBILITY WITH CURRENT HANFORD SITE BASELINE FACILITIES

The operation of the FCS will be very similar to current operations of the 242-A Evaporator in
the 200 East Arca. While the evaporator currently concentrates waste by removing a limited
amount of the water added for mobilization and transport of the tank waste, the FCS exiends the
evaporation cycle to reach a supcrsaturated condition from which dissolved salts can be
crystallized, separated, and removed. Therefore from a comparison of opcrational similarity,
many of the services needed to support the FCS can either be extended from existing
installations in the 200 West Arca or duplicated from the 200 East Arca systems. A discussion
of these scrvices is bascd on current Phase I studies of the proposed fractional crystallization
processing facility sited in the 200 West Arca.

6.7.1 Electrical Power

Electrical power will be supplied via a new drop from the 13.8 kV power lines in the vicinity of
the BV becausc the projected load exceeds the BV process facility available margin. Preliminary
cstimates indicate a FCS load requirement of 465 kVA. Requirements for backup emergency
power (diescl generator) have not been established, but a “placcholder™ cost for an emergency
gencrator has been included in the facility estimate.
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6.7.2 Telcphone/HLAN

Telephone and Hanford Local Arca Network (HLAN) services currently available at the BV site
will nced to be extended to supply the FCS. The exact number of lines needed for the telephones
and data cxchange interfaces will be determined during detailed design of the facility.

6.7.3 Raw Water

Raw water is currently used for retricval operations in the S Farm arca. To supply water needs
(boiler water makeup, fire protection, equipment flushing operations, sanitary service, etc.) at the
FCS, a 6" main will nced to be installed and connected to the closcst underground water line.

6.7.4 FEffluent Treatment

Condcnsate will be formed during the waste evaporation process and the water balance will
depend on the concentration of the waste feed. Ideally, if waste concentration exceeds 5 M there
will be a water deficit; if waste concentration is less than 5 M there will be a water surplus.
Water that cannot be recycled for process uscs, i.¢. dilution, transfer line flushing,
decontamination flushing, etc., will be collected and transported, via tanker truck, to the ETF.

6.7.5 Tank Waste Delivery

Tank wastc will be delivered to the FCS via a hosc-in-hose transfer (or other, double-contained
with heating and lcak detection) line originating in the arca of the S/SY tank Farm. Between the
time the waste is pumped from the underground tanks and reccived at the FCS it will be filtered
to remove suspended solids. The solids removal system will be developed during the facility
detailed design phasc and integrated as part of the facility design or developed as a separate site
infrastructure project. Included in the waste delivery system will be new, in-line instrumentation
(coriolis meter, RAMAN probe analyzer, and cesium monitor) that could provide indication
and/or contro! functions at the FCS. The wastc receipt line, or another smatler, double
contained, parallel linc will return concentrated (high cesium) wastc to the tank farm. A hosc-in-
hosc (or other, double-contained with heating and leak detection) line will be needed to transfer
processed tank waste to the DBVS facility for immobilization.

6.7.6 Analytical Scrvices

A certain number (to be determined during Phasc 11 of the project) of wet chemistry samples
will need to be taken to provide regulatory or process confirmation data. The closcst analytical
facility to process the samples is the 222-S Laboratory.

6.7.7 Sanitary Service

New sanitary scrvice leaching ficlds are not desirable therefore sanitary waste from change
rooms and rest rooms will need to be collected in underground holding tanks. Periodic tank
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pumping service, currently provided at other Hanford facilitics, will have to be extended to the
FCS.

6.7.8 Contaminated Solid Waste

Contaminated solid waste resulting from opcrations and maintcnance i.c. protective clothing,
contaminated tools, consumables, etc., will be collected at a designated location for pick-up and
transport to the Hanford Central Waste Complex.

6.7.9 Potable Water

Potable water will be required for change room showers/washing facilitics and drinking water.
Current planning for extending potable water lincs to the DBVS arca are indeterminate, but if
scrvice lines are not extended to this location a potable water storage tank will need to be
provided at the FCS site with periodic tanker truck dceliverics.

6.7.10 Support Facility

During the initial FCS operations, a temporary control room (modular building) will be utilized
to control the fractional crystallization process scparate from the DBVS. A temporary control
room was sclected because it may be advantageous to control the DBVS and FCS from the same
location. This will be a Phasc 111 decision. The modular building will have space allocated for
the additional opcerations day staff. Maintenance functions arc assumed to be supplicd from a
“central pool™ available on site. Afler the demonstration phase is complete, it is assumed that the
opcration of the fractional crystallization and BV processes can be combined into a single facility
with sufficient space to accommodate all the requircd support staff for both processes.

6.8 UTILITIES EQUIPMENT

6.8.1 HVAC

The building HVAC will be 2 sccondary confinement designed to prevent the dispersal of
airborne contamination to the environment in the event of an accident in building space. A
diffcrential pressure will be maintained between potentially higher to lower contamination
volumes starting with the process arca (unoccupied) to staging arca (occasionally occupicd) to
outside atmosphere. Airflow within the building will be from arcas of less contamination to
potentially higher contamination starting from the outside atmosphere to staging arca to process
arca. The system will also provide for various process tank ventilation. Under emergency
conditions, if the fans are required 1o be operated, the building should be capable of being
maintained at a minimum negative pressure of 0.1 in. wg relative to the outside atmosphere.

The building HVAC system will use new exhaust systems of a design that is currently qualified
for usc in tank farm retricval activitics. The rated capacity of these exhauster systems is 3,000
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¢fm at 30 in. wg and they will be slightly modified to change from a portable to 2 permanent
application. The building HVAC system will consist of several exhauster units and will have the
capacity to operate the process whilc one unit is offline for maintenance, At the present stage of
planning, each exhauster system consists of two stages of HEPA filtration preceded by a
prefilter, The exhaust fan and environmental/regulatory monitoring system is located
downstrcam of the HEPA filters, To minimize condensate on the HEPA filters, a heater is
located upstrecam to maintain the relative humidity at 70% or below at the HEPA filters. In this
application, high moisture air is not anticipated so a demister is not included however space for a
demister will be provided if nceded in the future. Instrumentation provided in each exhauster
system includes differential pressurc across prefilters and HEPA filters and temperature along
various points in the system. Exhaust gas monitoring includes a continuous air monitor and
rccord sampling system currently approved for Hanford usc.

The building will be heated and cooled (as required) to allow personnel to work in the staging
arca of the building. The process area is not a normally occupicd area and tempcerature in this
area is controlled only to maintain process conditions and equipment temperaturce limits.

The actual required system capacity will depend on building configuration, but will be designed
to mect regulatory requirements for this emission source. Applicable and relevant requirements
include:

o ANSIASME N509, Nuclcar Power Plant Air-Cleaning Units and Components
o ANSI/ASME N510, Testing of Nuclcar Air Treatment Systems
¢ ANSVASME AG]I, Code on Nuclear Air and Gas Treatment

¢ Gascous and particulate effluent monitoring will comply with ANSIVHPS N13.1, Guide
to Sampling Airborne Radioactive Material in Nuclear Facilities.

6.8.2 Steam Generator

Under current considerations, the stecam generator will be a skid-mounted, oil-fired unit located
inside the FCS building and sized to meet the maximum demand of the FCS. To avoid
contaminating the stcam generator with radioactive process fluids, means such as vacuum
breakers, intermediate heat exchangers, etc. will need to be considered during detailed design.
Fuel oil tanks, to supply the boiler, will be outside, above-ground, double-contained units
compliant with WAC 173-180.

6.8.3 Cooling Water System

A counterflow, induced-draft cooling tower will produce cooling water for the condensers. The
cooling tower uscs ambient cooling and produces cooling water for use in the crystallizer
condensers and the vacuum pump condensers. The cooling tower basin will have sufTicient
capacity for the entire volume of the cooling water in the system and will require
trcatment/blowdown systems to control biofouling and tota! dissolved solids.
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6.8.4 Secondary Containment System

Secondary containment compliant with WAC-173-303 will be provided for the FCS tanks and
tank systems that contain regulated wastes. Secondary containment required for the above
ground fucl oil storage tanks and related equipment will be designed to comply with the
requirements of WAC 173-180 “Facility Oil Handling and Design Standards Rule.”

57



SECTION 7.0




RPP-PLAN-27238 Rev. 0

7.0 PRELIMINARY HAZARD ASSESSMENT

The FCS must be integrated with the safety basis, opcrations, and maintenance concepts
currently in place for the Hanford Site tank farms. As a first step in this process, a preliminary
hazard assessment was conducted to qualitatively tdentify the hazards presented by this new
facility, taking into account the current state of the project previously described in this document.
As the design for the process, and the Facility enclosing it, are further developed more rigorous
reviews will be required to comply with the requirements of DOE Order 5480.23, Nuclear Safety
Analysis Report, 10 CFR 830, and the DOE Standard Hazard Categorization and Accident
Analysis Techniques for Compliance With DOE Order 5480.23, Nuclear Safety Analysis Reports
(DOE-STD-1027-92). When eventually completed, all the hazards for the FCS will be
documented in a facility specific Safety Analysis Report.

In developing this assessment for the facility two broad ranges of hazards were reviewed: a)
radiological hazards, and b) occupational and non-radiological hazards. In addition hazards werc
reviewed for neighboring facilities that included the 241-S and 241-SY tank farms, which will
supply feed to the FCS, and the DBVS, which will receive the processed waste. Hazards within
these neighboring facilities are summarized in Table 10, Hazards Identification Form.

Radiological hazards within the facility consist of the inventory of radionuclides contained in the
influent tank waste feed, the “in-process” solutions contained in the process system components,
and the various process cffluents i.c. purge strecam to the DSTs, feed stream to the DBVS,
ventilation system exhaust, etc. In general “time, distance, and shiclding” will be the primary
protective measurcs. QOccupational and non-radiological hazards consist of common industrial
hazards found in a process plant i.c. energy sourcces, pressurized systems, cquipment
maintenance, etc. Also included in this category are the chemical hazards associated with the
process itself and natural phenomena which could affect the facility and its operators. Primary
preventive measures for occupational/non-radioactive hazards will be engincering controls,
Conduct of Operations, and proper personal protective equipment (PPE).

7.1 RADIOLOGICAL HAZARDS

The primary radiological hazard in the FCS facility is the potential dose rate from equipment and
piping carrying the waste feed solutions during various stages of processing. From valucs
presented in the project SOW, concentrations of 137 Cs can range from 100 uCi/mL for the SST
Early Feed, to 10 pCi/mL for the SST Late Feed. Concentrations for '*Cs in the DST feed can
be as high as 490 pCi/mL. Based on this variability of concentrations, an ALARA study
(Appendix F) was performed using an assumed facility configuration (Figure 20) and the DST
feed as the basis. For simplicity, all dosc rate was assumed to come from the crystallizer.
Components, ¢.g. condenser, reboiler, ctc., which in conventional crystallizers arc integral with a
“skid” arrangement, were spread out within the process arca to begin considering maintenance
accessibility. The results of this preliminary ALARA study arc included as Appendix F. For
cstimating purposcs, additional intcrnal shicld walls are proposed in the facility to minimize
personnel exposure during maintenance and operation.
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Table 10. Hazards Identification Form,

241-SY Tank t ]
241-S-Tank Farm DFC BV
Energy Farm' Fa S
Classification
PT PE rT PE PF PE PF PE
Electrical 7.8,12, 1.5. 7. 7.8,12, 10,12,13, | 2.6,7.8, | 1,2,3,4,5,6, | 1,2,3,4,5,6,
14,15 12, 14, 14,15 14,15 9,15 7.8,9,10,11, | 7,8,9,10, 11,
15, 16 12,13, 14,15 | 12, 13,14, 15
Thermal 3 2,3 2,3 2 2,3,4,7.] 23,4689, | 2.3,4,6,89,
9.1 10, 11,13 10,11, 13
Friction 5 1.2.3,5 3,57 NA 1,2,3,4,] 1.2,3,4,5,6 | 1,2,3,4,5,6
56
Corrosives 2 2 2 1,.2,3,4,5, 2 1,2.3 1,23
6
Kinetic — 2,4 2,4,9 2,4,9 NA 1,2,4,8 | 2,4,5,7,8,9 2,4,5178
Rotational
Kinetic -~ Linear NA 1,45 NA 1,4,5 1.4 1,2,4,56,7 | 1,2,4,5,6,7
Mass, Gravity, 1" 3,51 " 3,5 11,13 13 1,2,3,4,5.6, | 1,2,3,4,5,6,
Height 7.9.10, 11, 7.9.10, 12,
12,13, 14 13,14
Pressure ~ 7.10, 56 7,10, 14 56 59,10, | 1,2,5,6,7,8, | 1.2.5.6,7,8,
Volume 14 1 9,10, 11,12, 9,10, 11,12,
13, 14 13, 14
Explosives/ 6,7,8 67,8 6,7.8 6,78 6,7,9 5,6,78,12 5,6,78,12
Pyrophorics
Nuclear Crilicality 5 NA 5 NA NA NA NA
Flammable 12, 14, 37,9 11,12, 1,.2,3,7.9, 1,2,4, 1.2,3,4,5,6, | 1,2,3,4,5,6,
Materials 15 12, 14, 14,15 10, 11,12, 10,11, | 7.8,9,10,11, | 7.8,9,10, 11,
15 14,15 12 12,14, 15, 16, | 12, 14, 15, 16,
17 17
Hazardous 2,9 NA NA NA 2,5,6,7 | 2,5,6,7.89| 2,56,7,89
Materials
lonizing Radiation 3 NA NA NA 3,4 3.4 3.4
Sources
Chemical 1 NA 1 NA 1 1 1
Reactions
External Events NA NA NA NA 1.2, 1, 2,3.01, 1.2,3.01,
3.01, 3.02 3.02
3.02
Vehicles in Motion NA NA NA NA 4,5 4,5 4,5
Natural Events 6 NA NA NA 1,2,3,4,] 1.2,3,4,5,6, | 1,2,3,4,5,6,
5,678, 7.8,9,1 7.8,8,1
9,10
The hazard identification represents the hazards that could potentially cause an uncontrolled release of radioactive or hazardous

materials only. Hazards only resulting in personnel injury are not included.

PT = potentially present in the tanks
PF = potentially present in the facility
PE = potentially present elsewhere infadjacent to facility

1 The hazards identification for the tank tarms were obtained from RPP-13033
2 The hazards Identification for the BV facility was obtained from RPP-23429
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Hazard ldentification Checklist and Energy Designators,
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Spills or lcaks releasing contaminated liquids from the process systems are other sources of
radiological hazards. To minimize this potential, process fluids will be double contained when
cxternal to the facility, Inside the facility the normal single wall piping systems will depend on
building containment and local catch basins to prevent releascs to the environment. During the
design phase, stainless steel liners or impervious coatings, e.g. Ameron™ should be considered
for additional lcak protection and fluid barrier during water wash-down.

The process systems will be provided with flush and drain connections to minimize cxposure
during maintenance. The contaminated liquids will be routed back to the process to minimize
waste generation. Another concept to be explored during the design phase (Phase Hi) is to
include cquipment with “cartridge” type replacement o minimize maintenance stay time in
process arcas. Building HVAC will be zoned to allow air flow from the “least” to potentially
“most” contaminated arca and will include vents from some of the process tanks/vessels. The
HVAC system will be based on configurations currcntly uscd for tank farms local exhausters and
will consist of redundant units as required to provide minimum ventilation in the event of failure
of onc unit. The need for redundant capability will be established during Nuclear Safety and
Hazards Analyses. The exhaust stack will be equipped with continuous cmissions monitoring
equipment and will comply with the requirements of the Hanford Site Air Operating Permit.

7.2  OCCUPATIONAL AND NON-RADIOLOGICAL HAZARDS

7.2.1 Flammable Gas Deflagration

The potential for a flammable gas hazard exists at all tank farm facilitics where wastes arc
present. The generation of flammable gas, primarily hydrogen, in tank farms wastes has been
well documented and is the result of radiolysis of water and organics, thermolytic decomposition
of organic compounds, and corrosion of stecl tank walls. Additiona! flammablec gases may
consist of ammonia, methane, or other organic compounds contained in the waste. The quantity
of gas available depends on the composition of waste in a tank, the quantity of waste present in a
tank, and the ventilation/ambicent pressure in a tank. Since the FCS will be receiving only clcar
(no particulate) filtered liquids from the tank farms, the concentrations of dissolved gasses will
be limited to their solubilitics in the tank liquids at the pumping temperature, Inside the FCS
facility, where the gasscs will be stripped from solution during the evaporation process, the
gasses in vesscls/components will be removed by an exhaust system that is vented to the
atmosphere via thc HVAC system.

7.2.2 Hazardous Chemical Exposure

Tank Waste may present a toxicity hazard due to the presence of toxic metals or the presence of
toxic organic compounds. Exposures to the waste, aside from the radiological hazard, should be
avoided to prevent toxic effects.

The waste solutions handled at the FCS are caustic duc to the concentration of sodium
hydroxide. Ingestion may cause scvere burns of mouth, throat, and stomach, and scvere scarring
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of tissuc may result. Skin contact can causc irritation or severe burns and scarring with greater
cxposurcs. Eye contact can cause irritation, and with greater exposures it can cause burns that
may result in permanent impairment of vision, or even blindness.

Carbon dioxide may be used at the FCS to carbonate tank wastes for hydroxide ncutralization.
The gascous carbon dioxide, as used in the process, presents a suffocation hazard if the gas is
released in a confined space and inhalation of high concentrations may causc hyperventilation
and unconsciousness. The liquefied gas will be provided with outdoor storage and presents
hazards common to liquefied gases under pressurc.

Hydrogen_peroxide (50% liquid solution) may be used, pending further evaluation, at the FCS
to oxidize tank wastcs. Inhalation of gascous hydrogen peroxide can cause chemical burns to the
respiratory tract in addition to ulceration of nasal tissue, insomnia, nervous tremors with numb
extremitics, and in extreme exposure cases, chemical pncumonia or unconsciousncss. Ingestion
of hydrogen peroxide may cause gastrointestinal irritation with nausea, vomiting and diarrhea.
Dircct contact may causc severe skin irritation and possible burns. If liquid is splashed in the
¢ycs, it may caus¢ scverc bums and corneal damage.

7.2.3 Pressurized Equipment

Pressurized equipment is necessary for routine operation of the FCS. Typical pressure sources
will include process stcam (saturated at approximately 125 psig), instrument or plant compressed
air (at approximately 100 psig), and various water lines at about 30 to 50 psig. The crystallizers
will operate under vacuum conditions, but will receive the pressurized discharge of pumping
equipment. An additional hazard to consider will be a fire hazard resulting from pressurized fuel
oil used to fire the process steam boiler. Fucl oil storage tanks and piping will comply with the
applicable portions of WAC 173-180 Facility Qil Handling Operations and Design Standards.

7.24 High Temperature Exposure

There is the potential for worker exposure to high temperature surfaces (> 135 F) and cquipment
duc to routinc opcrations using process steam.

7.2.5 Human Hazards

The most likcly human related hazard is operator error. Opcrator error is possible when workers
arc responsible for monitoring system parameters, adjusting operating parameters, responding to
system alarms, or responding to out-of-limit parameters. The consequences of human error will
depend on the sub-system that is affected and the nature of the materials present in the sub-
system. The FCS will be designed to minimize the potential for human error through automatic
monitoring of sclected parameters and computer controlled actions or reactions to abnormal
process conditions.
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7.2.6 Environmental Hazards

The FCS will be designed and constructed to prevent damage by potential cnvironmental hazards
that may occur such as high wind loads, freczing temperatures, earthquakes, lightning, rain,
snow, ashfall, and rangefires. The potential impact that these hazards may have will be
addressed by the system design criteria.

7.2.7 Facility Industrial Hazards

In addition to the unique hazards of a nuclcar facility, there arc a varicty of typical industrial
hazards present at the FCS. There are clectrical shock hazards, hazards from moving cquipment,
fall hazards, confined space hazards, power tool hazards, welding hazards, vehicle hazards, and
others. Thesc hazards are present when workers arc involved with normal operations or
performing maintcnance on the process systems/facility. Once the FCS facility is opcrational, a
comprchensive Conduct of Operations program will be implemented in concert with an
Intcgrated Safety and Management System.

7.2.8 Flammable Liquid Storge

Fuel oil to supply the auxiliary boiler will be stored inside the FCS fenced arca and represents a
potential firc hazard. To ensurc the hazards related to fucl oil storage are minimized, the entire
system, including equipment and all operating procedures, will comply with the requirements of
WAC 173-180 Facility Oil Handling Operations and Design Standards Rule.

7.3  SUMDMARY

The above discussions present a cursory review of the potential hazards associated with
opcrating the FCS. The operation of the FCS has also been compared to near-by facilitics and is
summarized by Table 10. While the occupational and non-radiological hazards are no more
scvere than typical chemical plant operations, the added dimension of radioactive materials
increascs risks of exposure to both on and off-site individuals. For preliminary planning
purposcs, and until more rigorous analyscs can be performed, the FCS will be conservatively
assumed to be a Category 2, non-reactor nuclear facility. This preliminary designation is based
on assuming all proposed fluid systems are filled to operating levels (approximately 7000
gallons) with the DST feed previously cited. Using these values and also assuming no
concentration of feed in the evaporators or other decay isotopes, the total '’ Cs inventory is
about 1.3E +04 curics. This value falls between "*'Cs inventories for a Category 2 facility (8.9E
+04) and Category 3 facility (6.0E +01) as noted in DOE-STD-1027-92, Attachment 1.
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8.0 LIFE CYCLE COST ESTIMATE AND SCHEDULE

8.1 INTRODUCTION

This scction presents the basis for the life cycle cost estimates for design, construction and
opcrational cost estimates for a conceptual facility and support systems for the FCS — hereafter
referred to as the Fractional Crystallization Facility or FCF. It describes the methodology,
assumption and background used to develop the estimates. Details of the estimate are contained
in Appendix G.

8.2 OVERALL APPROACH AND METHODOLOGY

The following scctions demonstrate the methodology and basis for the life cycle cost estimate
provided within this document. The technical basis for the estimated costs contained within arc
bascd upon the preliminary process description/flowsheets and preliminary hazard asscssment. It
docs not reflect the impact of operational decisions, ¢.g. tank farm piping interfaces, additional
tanks for storage, process analytical requircments, etc. that have been deferred until Phase 111 of
the project. Previously obtained information from the DBVS and the WTP were incorporated
where practical. The costs inscrted were for similar or like equipment that could be used for the
FCF. Estimated values for enginecring effort and cquipment costs are partially bascd upon
Framatomc-ANP’s current experiences with the Hanford evaporator project that supports the
Hanford Waste Treatment Plant as well as the Depleted Uranium Hexafluoride (DUFG) projects
for the Depariment of Encrgy at both Paducah, Kentucky and Portsmouth, Ohio. Costs for DOE-
ORP and the Tank Farm Operator (TFO) management/engincering costs have not been estimated
or included. To develop the total life cycle cost of the facility, these costs should be included.

8.2.1 FEstimate Scope

The FCF life cycle cost estimate was developed with the following Work Breakdown Structure
(WBS) clements:

Project Management

Engineering
- Title I (Preliminary / Conceptual Design)
- Title IT (Dctailed Design; reviews at 30%, 60%, 90%, and final)

- Title I1I (Design Support for Procurement and Fabrication and Construction /
Installation)

Operations (Two Years Trial / 17 Years Full Scale)

Decommissioning
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For this estimate, the overall assumed basis of the plant operation is twofold. The first phascis a
demonstration period of two years which the plant would opcrate at a reduced capacity. The
sccond phase would be 1o operate at full capacity for a 17 year period. Plant cquipment would
remain the same under both scenarios; utilizing variable speed drives on pumps and same sizing
of pipclines would minimizc any equipment change outs between the two operating scenarios.
Thercfore no capital improvement costs were included in this estimate for moving from the first
scenario to the sccond.

8.2.2 Contingency

Contingencics for the portions of the life cycle cost estimate are shown on the summary page of
Appendix G and in Table 12 below. Each segment of the life cycle WBS is represented with its
scparatc contingency. In accordance with DOE 430.1-1, contingency is the amount budgeted to
cover costs that may result from incomplete design, unforescen and unpredictable conditions, or
uncertaintics. The amount of the contingency will depend on the status of design, procurement,
and construction and the complexity and uncertainty of the component parts of the project.
Contingency is not to be used to avoid making an accurate assessment of expected cost. For this
life cycle cost estimate, with the unforescen and uncertainties at this stage of the project (pre-
planning), a conscrvative percentage of contingency allowed by the DOE 430.1-1 for each
scgment in Table 12 was used. Under DOE 430.1-1, during the Planning Stage, the
Experimental/Special conditions allow for contingencics of up to and including 50%.
Contingencics of less than 50% were uscd as shown below.,

Table 12. Life Cycle Cost Estimate Contingencies (2 Sheets).

VWBS Item Percent Contingency
SUPPORT
Project Management 10%
QA 5%
ES&H 5%
Information Management 5%
Repulatory and Licensing 10%
ENGINEERING
Title I Design 20%
Title Il Design 35%
Title Il Design 10%
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Table 12. Life Cycle Cost Estimate Contingencies (2 Shects).

WBS Item Percent Contingency
CONSTRUCTION
Site Work 25%
Building 45%
Process Equipment 40%
Piping and Fittings 30%
Valves 25%
Instrumentation 45%
OfT Gas System 30%
Steam Supply 30%
Process Water 30%
. Chiller/Condenser System 0%

OPERATIONS (BASED ON 2/17 YEAR LIFE SPAN)

Operations Labor 10%
Material 15%
Equipment 30%
DECOMDMISSIONING

Characterization 35%
Decommissioning Plan 10%
Field Opcrations 35%
Final Survey 35%
Final Report 10%

8.2.3 Escalation

. The FCF life cycle cost estimate is based upon 2005 dollars. For simplification purposes, the
cstimate excludes escalations of future costs. In general, unless otherwise noted or described,

67



RPP-PLAN-27238 Rev. 0

any obtaincd past costs used in this cstimate were escalated at 3% per year to bring the costs to
present 2005 dollars. Special escalation costs for materials, specifically stainless steel, were not
included at this time. The Phased Costs for out years shall be bascd on the percentage increase or
decrease in accordance with a mutually agreeable economic price adjustment index such as the
Employment Cost Index for Wages and Salarics and the Engincering News Record (ENR)
Construction Cost Index. Local costs for materials and deliveries were included when possible.

8.24

Estimate Assumptions

For the purposcs of this Phasc 1 estimate, the following assumptions wcre made:

The site/facility will be a Category Il facility with no Category I equipment required. A
full Final Hazards Analysis (FHA) will need to be performed to verify requircments for
the factlity and equipment,

Preliminary Documented Safcty Analysis (PDSA) has not been performed and will likely
impact this estimate.

Chemical storage and sccondary containments are assumed to meet local building code
requircments only,

A temporary (modular) control room for the two year trial period will be acceptable to
the DOE.

Costs of transfcrring permanent operational control to a permancnt control room are not
addressed.

Tank wastes treated by the FCS arc accepted by the facilitics when they are completed
and as described in the scoping documentation.

Costs of transporting sccondary wastes and treated product will be provided by others.

Costing data assumes the facility location will be no more than 1 mile from existing roads
and utilitics.

Engincering/operating labor rates are presented as average rates as of August, 2005 based
upon average Framtome-ANP rates or 2004 HAMTC and other Hanford employces’
rates. Actual construction labor costs will be governed by the Hanford Site Stabilization
Agreement rates in effect at the time of construction.

Adcquate funding is available with no funding gaps throughout life cycle of the project.
No employce relocation costs are included in the estimate.

Minimal earth movement and sitc development is required.

No extended storage of treated or to be treated material or product is required.
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¢ Deccommissioning costs assume only minimal contamination and equipment disposal
costs.

¢ All contaminated material can be disposed of at the Hanford ERDF.

 Installation costs arc based on a Hanford crew at 50% cfficiency; lift equipment, storage,
inspcctions, and final transport — all approximated by 10% or more of the value of the
component,

e Piping installation costs equals material costs.
¢ BV Plant component costs arc applicable as applied.
¢ Opcrations take place 24 hours a day 7 days a week.

e Disposal costs for materials during decommissioning do not vary above the amounts
found on the estimate.

e The estimate assumes decommissioning surveys would be performed in accordance with
specifically developed plans and procedures.

83 PROJECT MANAGEMENT COSTS

8.3.1 Project Management

Project management costs are built up using the basis that a project manager and supporting staff
will be used from 2006 through 2010. This cstimated time frame begins during the initial design
phasc Title I effort, and continues through startup operations of the FCF. This total cffort
includes the following Ievel of effort labor:

e Projcct Manager

¢ Procurement Management

e Project Controls

e Scheduler

e Configuration Management

A project manager would scrve as lead for the project as defined by DOE documentation.
Depending upon the final schedule, building and engincering complexities, a deputy project
manager may be required during the final design and construction phascs of the project. Costs
for a deputy project manager were included in this estimate.

A configuration manager would track and process all documents, drawings and calculations
associated with the project. As with the project manager, depending upon the FHA, PDSA, final
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design and construction complexitics, a deputy configuration manager may be required. Costs for
a deputy configuration manager were not included in this estimate.

8.3.2 Construction Management

Construction management provides nccessary resources and direction to ensure that the FCF
construction project meets its quality, cost and schedule objectives in a safe manner, Primary
arcas of responsibility include review of design drawings and specifications for constructability,
developing construction contracts, establishing policics and procedurcs, obtaining necessary
permits and licenscs, managing contracts, cvaluating proposal, procuring equipment and
scrvices, negotiating and awarding orders and providing change control.

Construction management costs arc based upon level of staffing, construction shifts, applied
labor rates and burdens, and construction schedule duration.

Thesce costs are shown in the Title Il scction of the engincering costs, construction costs and in
the project management sections.

8.3.3 Supporting Functions

Supporting functions such as Environmental, Safety and Health (ES&H), Information
Management (IM) and Nuclear Safety/Environmental Permitting support are represented in this
scction. Initial efforts for the EH&S plan and licensing support are scaled back after the start of
the demonstration portion of the project. Once the production phase begins, larger cfforts for
these support functions will be required to during the initial restart and testing of the FCF.

The total estimated cost for the Project management function is $7.66 million dollars and
includes over $689,000 in contingency dollars.

84 ENGINEERING COSTS

This section describes the estimate for the design engincering effort required for FCF through the
three Title phases.

8.4.1 DNlethod of Estimate

The FCF lifc cycle cost estimate was developed based upon the preliminary process descriptions,
conceptual equipment drawing, and the preliminary process flowsheet. From those descriptions
and drawings, an assumed preconceptual facility size was created based on anticipated
equipment sizes and the estimated supporting infrastructure nceded for the facility to operate. A
preliminary ALARA review (Appendix F) produced values of radiation doses during opcrations
that were utilized in the conceptual facility layout (Figure 20). Title I, 11, and Il enginccring
estimates were built utilizing the estimated number of systems, the facility Jayout and the
estimated number of design products. Past and current Framatome-ANP (FANP) projects and
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experiences provided the guidance on the expected number of systems and drawings that could
be required to complete a facility such as the FCF. Preliminary information for a System Design
Description (SDD) or Documented Safety Analysis (DSA) would be needed to provide a2 more
accurate estimate of the Title 1, II and 111 engincering cffort required. An SDD and DSA would
also provide the impact to the engincering cffort required for the procurement and construction
support phases. Work hours for Title I1I cffort were based upon a level of effort workforce
appropriate for the size of the construction workforce. A level of cffort workforce for
engincering support in estimating the labor required for the life span of the facility is included in
the Opcrations scction of this document.

8.4.2 Title 1 Engincering

Title I Engincering begins with a preliminary design of the systems and facility. It includes a
Preliminary Hazards Analysis (PHA) and developing an SDD that will assist in identifying
componcnt classifications and opcrating conditions. The cffort also includes a PDSA. During
Title 1, systems will be described, component sizing will be denoted, general operating plans and
mecthods are described. The buildings/facilities needs witl be known. Supporting infrastructure
and requircments are developed. Fire protection requirements are described.

Total effort is estimated at over 23,000 labor hours for development of the required information
nceded for Title I1 start.

8.4.3 Title 1l Enginecring

Title It Support includes design for the facility and systems; establishing operational
requirements; cquipment documentation; system and component calculations; building and
structural designs; fabrication and building specifications; thirty, sixty and nincty percent design
reviews; Opcrational Readiness Review preparations; final design for the facility and systems;
procurcment specifications; testing procedures; start up procedures; and Operations and
Maintenance manuals.

Total labor effort for Title 11 Engincering is over 63,000 hours.

8.4.4 Title IIl Engineering

Title 111 engincering support covers the level of effort required for the construction phase of the
project. This effort includes problem/interference resolution, system acceptance reviews, ORR
support; start up support; and systems tumn over and check out. All documentation would be
turned over and project closcout for engineering would occur during this phase.

Total labor effort for Title III Enginecring is over 7,000 hours.

Total Engincering Costs arc estimated to be $10.49 million dollars with an included contingency
of over $2.3 million dotlars.
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8.5 CONSTRUCTION COSTS

8.5.1 DMlethod of Estimate

Equipment costs were estimated using similar types of equipment found in the WTP, cquipment
uscd at the DBVS and actual quotes for components, material and labor. The costs for the
cvaporator or crystallization systems and similar controls werc utilized in this estimate. The
facility costs were estimated using RSMEANS Building Construction Cost Data (63" Edition),
and facility estimating tools for material and construction labor where applicable.

8.5.2 Construction Site Services

Construction sitc scrvices costs include construction facility rental costs, costs for construction
power and telephone services, costs for temporary roads and parking arcas, and construction
sceurity costs. Allowances are included for survey crews and for maintenance of permanent
cquipment prior to turnover to operations.

8.5.3 Construction of Facilities

The estimated costs to construct facilitics include all direct and indirect costs. Direct costs
include all construction materials, labor, capital equipment and subcontracts. Indirect costs
include 2all equipment rentals, tools, consumables, supervision, insurance, taxes, general and
administrative expenscs, and contractors overhead and profit.

8.5.4 Facility Description

The facility cstimate was based upon a cast in place, reinforced concrete facility. To put an
initial bound on the facility, the overall sizc was cstimated to be approximately 7,700 square fect.
For a prcliminary gencral arrangement sketch of the facility refer to Figure 20. The crystallizers
would be contained in silo like extensions that would risc approximatcly 15 fect above the roof
linc of the factlity with the remaining roof line limited to 35 feet. A partial shield wall between
the first stage process equipment and the sccond stage equipment will stop just below the ceiling
to allow for crane passage. Another smaller partial shield wall will minimize direct “shinc” on
the equipment door. Other major components such as tanks, pump skids, centrifuges, etc. were
arbitrarily located for accessibility. A 5-ton overhead crane and rail system for equipment
movement was included in the estimate. A small lay-down area and equipment room is included
in the estimate. Fencing surrounds the facility to prevent random access to limit personncl
exposure to radiation. The temporary control room would be situated outside the main facility
but within the fence line. Supporting equipment and systems such as the CO; and H;0; (as a
“place holder™) storage tanks are outside of the main building.

No facility changes would be required to step up to full scale production from trial production.
The equipment, pumps piping etc. would be sized to operate within both parameters. Variable
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spced drive mechanisms would control pumps; instrumentation would be initially installed that
would be able to read the full scale information as well as the trial production rates.

8.5.5 Component Fabrication

Component fabrication costs included in this estimate include all direct and indirect costs,
overhcads and profits; shipping insurances; shipping costs and permits, materials, testing and
quality assurancc costs.

Total facility and equipment costs, as currently scoped, arc estimated to be $23.8 million dollars
which includes over $6.3 million dollars in contingency dollars.

8.6 OPERATION COSTS

8.6.1 DMlecthod of Estimate

Opcration costs include opcerations labor (level of cffort), facility costs for utilitics and upkeep,
materials for crystallization processing, maintcnance and replacement parts, and personal
protcction equipment.

Opcrating costs arc stated in 2005 dollars not escalated for each year of opcration.

Opcrational costs for the two-year trial cycle and the costs for full scale operations arc assumed
the same. Flow rate changes going to full scale operations require additional and/or revised
operating procedurcs whose costs are included in the Title I and Title 111 engincering and in the
operational scctions of the estimate. Minimal changes in supporting system costs would be
incurred as full scale operations. Duc to the small incremental change, the costs for these
supporting systems were included at full scale operations rates for the 19 year duration.

Material and equipment were estimated from the process throughputs in the process description.
Items such as utilitics, personal protective equipment, consumablcs, and anti-contamination
clothing were based on a percentage of the total labor hours. The cost of the large quantity
chemicals were based on prices received from vendors supplying other Richland, WA arca
facilitics.

8.6.2 ALARA

A basic review of the anticipated cesium inventory (assumed to be contained only in the
crystallizer for the preliminary shiclding analysis) indicates high dosc rates in the process arcas
during opcrations. To avoid excessive exposure, operations would cease for maintenance
purposes and liquid systems would be drained and flushed. Minimal costs for this opcrational
change are anticipated and are not included in this estimate.

Normal operational expenscs for dosimetry and other radiological environment needs are
included in the opcrations scction of the estimate.
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8.6.3 Opecration Labor

To bound operating costs, the opcrations estimate was based on running the facility 24 hours a
day, 7 days a weck, for 19 years. This typc operation will require four shifts of opcrating
personnel plus day staff personnel to support them. Each shift is assumed to consist of three
operators, onc shift manager and onc heaith physics technician. This is considered the minimum
stafling for around the clock operation. All rates for personnel are averaged and were based on
available data from the Hanford facilities during 2004. The multiplicr of 1.65 includes a 1.03%
increase that raises expected 2004 rates to 2005 dollars.

The day staff support personne! consists of three operators, one health physics technician and
onc manager. The dayshift personnel also provide vacation and holiday relief for the rotating
shift personnel. The majority maintenance craft arc assumed to be ready available labor from a
central pool. Only a maintenance supervisor, planner and instrument tech are cstimated as full
time. Other support personnel for dayshift include ES&H, quality, enginccering, procurement, and
opcrational support, some of which arc considcred to only be needed part time.

Plant Engincering support consists of onc mechanical engincer, one process engincer, onc
instrumentation/controls engineer and one engincering manager, The engincering support would
be located in a facility outside of the fence.

8.6.4 DMaintenance

Duc to radiation exposure limitations, no maintenance would occur on the crystallizer system(s)
while they are operating. All maintecnance would be performed with the crystallizer system(s)
draincd of cesium laden liquid and flushed. The material would be pumped from onc side of the
facility to the other or would be transferred back to the storage tank from where it came until it
can be received in the facility again, Costs for any transfer back to its original underground
storage tank is not included in this estimate. Labor costs for transferring material from one side
of the facility to the other arc included in the operations scctions of this estimate.

8.6.5 Process Materials

Carbon Dioxide and 50% Hydrogen Peroxide, as noted in Section 7.2.2, would be used during
opcrations in amounts described in the system description. The estimated costs for these
consumables were obtained through quotces as shown in Appendix G.

8.6.6 Replacement Equipment

It is assumed that during the total 19 year lifecycle of the facility, components will be replaced
periodically. While major components such as the erystallizer and reboiler should be designed to
last the life span of the facility; pumps valves and similar picces of equipment will require
replacement over the life span of the facility. These costs arc included in the section of the
estimatc called Operations Summary found in Appendix G.
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The total operating costs of $140.4 million dollars includes over $14.0 million dollars in
contingency.

8.7 DECOMMISSIONING COSTS

Disposal costs may vary towards the end of life period for this facility duc to availability,
licensing issucs etc. Costs for this estimate are gencralized on this basis.

8.7.1 Criteria for Commissioning

Requirements for decommissioning are stated in DOE Order 430.1A, Life Cycle Assct
Management (LCAM), which identifics the minimum requirements for disposition of an excess
DOE facility. This Guide defincs activitics or actions that provide a scquenced risk reduction to
the sclected disposition path. It is part of the DOE Dircectives System, and is consistent with the
principles and core functions of P 450.4, Safcty Management System.

Other documents consulted to support the planning and conduct of transition and disposition
activitics include:

e DOE-STD-1120-98, Integration Of Environment, Safcty And Health Into Facility
Disposition Activitics, and the Good Practice Guides associated with LCAM.

e DOE G 430.1-4, Dccommissioning Implementation Guide

e DOE G 430.1-2, Implementation Guide For Surveillance And Maintenance During
Facility Transition And Disposition;

o DOE G 430.1-3, Dcactivation Implementation Guide;

o DOE G 430.1-5, Transition Implementation Guide.

The Decommissioning Implementation Guide, Decommissioning Handbook (Drafl -DOE/EM-
0383, January 1999), and Decommissioning Preferred Alternatives Matrix (Junc 30, 1997)
replace the previously issued Decommissioning Resource Manual (DOE/EM-0246, August
1995) and Decommissioning Handbook (DOE/EM-EM-0142P, March 1994).

The present DOE G 430.1-4, Decommissioning Implementation Guide differs from the
Decommissioning Resource Manual (DOE/EM-0246, August 1995), which included a varicty of
information of interest or potential use to decommissioning project managers and staff. Material
from the Resource Manual that directly relates to implementation of these policies and directives
has been incorporated in this Guide. Material from the Resource Manual and former Handbook
that docs not directly relate to acceptable methods for meeting program requirements is being
compiled in the present Decommissioning Handbook as an information resource for
decommissioning project personnel. Material from the former Handbook dealing with
decommissioning technologics has been incorporated into the Decommissioning Preferred
Alternatives Matrix.
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The estimated cost to decommission the FCF is $4.595 million dollars which includes over $1.1
million in contingency dollars. This section of the cost estimate report provides an overview
of the considerations and factors that influenced the decommissioning cost estimate.

Table 13 provides a summary of the costs associated with cach arca of the facility. These
cstimates are based upon past Framatome-ANP experiences and actual costs where available.

Table 13. Decommissioning Cost Summary - FCF,

Decommissioning | Man- Labor Living & | Equipment, Radwa§ te Total
Task hours Cost Travel Contracts Packaging Cost
Cost & Supplies | & Shipping
Characterization 1,144 $93,550 319,609 $28,902 50 $142,061
Decommissioning 626 368,592 30 $0 $0 $68,592
Plan
Field Operations 20,773 | 51,647,023 $575,114 $746,740 $64,004 | $3,033,481
Fina! Svrvey 928 $76,072 $21,035 $19,609 30 116,716
Final Report-Closcout 693 $50,353 317,576 30 30 367,929
Totals 24,164 | 51,936,190 $633,333 $795,251 364,004 | 33,428,778

8.7.3 Cost Modifying Factors

There arc modifying factors that significantly affect the overall cost for remediation. One of

these factors is an adjustment for productivity related to personnel protection requirements and
working cnvironment. The degree of protection required depends upon the extent of
contamination and specific activitics to be performed in a given arca. As the level of personnel
protection increascs, so docs the impact on individual productivity and task duration.
Adjustments were made to account for the implementation of personnel protective measures
where applicable. This estimate used the standardized levels of personnel protection
described in Table 14,

8.7.4 Radioactive Waste Volume Estimate

The volume of radioactive waste requiring treatment and disposal can be a very significant
modifying factor due to the high cost for radwaste disposal. For the FCF decommissioning, the
cost for radioactive waste processing, shipping, and disposal is anticipated to be about 40% of
the total decommissioning cost. This is a normal fraction for radioactive facilitics. Radioactive
waste volume estimates are discussed in the following section. Table 15 provides a volume
summary for cach arca of the FCF.
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Table 14, Personnel Protective Equipment Protection Summary.,

Level Description

Level A: The highcs! availablc level of respiratory, skin, and
¢ye protection
The highest level of respiratory protection, but less
skin protection than Level A, Level B is the

Level B: . . AR .
minimum level recommended for initial site entrics,
or for other entry conditions dealing with unknown
The same level of skin protection as Level B, but a

Level C: . .
lower level of respiratory protection.

Level D Modified: Sl‘un protection similar to or the same as Level C,

without respiratory protection.
Standard work uniform suitable for construction work:

Level D: . . . . .
no respiratory protection and minimal skin protection.

Table 15, FCF Unprocessed Radioactive Waste Summary.

Area Description Total Dis;();_)rg)al Volume
DFCS Utility Equipment 149
DFCS Process Equipment 3,347
Process Equipment Building 1,159
Utility Equipment Building 59
TOTALS 4,714

8.7.5 Radioactive Waste Volume Reduction Costs

The volume reduction processes analyzed for usc are summarized in Table 16. For each volume
reduction method, this table shows application information, transportation container type, and

the total process cost per unit weight. These unit factors are applied to specific items of

equipment requiring disposal to determine the most cost-cffective process. The radioactive
waste generated at this facility will include contaminated hardware, contaminated concrete,
HEPA ventilation systems, fume hoods, stecl, etc., and secondary waste gencrated during the
decontamination work such as protective clothing and materials used during manual

dccontamination work.
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Table 16. Volume Reduction Mecthodology Costs.

VR Methodology Applicability T”‘“SP‘Z;;I?:“‘“'“" Total VR Cost ($/b)
Super Compaction Dry Active Waste 20 1b/Tt B-25 $5.59
Incidental Lead Bricks and Sheet Custom Box $7.25
Decontamination
Survey and Release Low Low Density Waste 55 Gal Drum $1.45
Density Drums
Survey and Release Waste At Greater Than B-25 Box $0.66
Medium Density Boxes 207<60 Ib/n?
Survey and Release High Waste At Greater Than B-25 Boxes $0.52
Density Boxes 60 lbs/Nt

8.7.6 Final Surveys

Final survey costs arc estimated based on the facility radiation survey information presented in
U.S. Nuclear Regulatory Commission Regulating Guides NUREG-1757, MNSS
Decommissioning Standard Review Plan. The number of sample points for the various arcas
being surveyed and the type of survey being performed were determined. The time to perform
cach of these surveys is estimated, and the product of these two items is the labor time to
perform the surveys. Equipment and material cost to perform the surveys is added along with
staff support costs to determine a total cost. The survey requirements arc based on NUREG-
1575, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) Ref. 6-10). A
spreadsheet was developed which incorporates facility dimensions, labor rates and support cost
ratios to estimate the final survey cost. The facility survey labor estimate is summarized in
Appendix F as well as the open land and miscellancous arca survey labor estimate,

Decommissioning of the FCF requires that residual radioactive materials be removed from the
site to allow removal of the decommissioned facilities. For the purposes of this cost estimate, the
end of the decommissioning project occurs when the FCF has been remediated to releasc limits;
the Final Status Survey has been performed, documented and submitted to the DOE.

8.7.7 Remediation Summary

While remediation will be required for the FCF, it is not anticipated that remediation in outdoor
areas will be required. Table 17 is a brief summary of the anticipated remediation activitics, with
applicable assumptions and bascs.
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Table 17. FCF Planned Remediation Activities.

Building or Arca

Remediation Activities

General Arca

Perform a gencral facility cleanup to remove 21l incidental equipment and
materials; both radioactive and non-radioactive.

FCF Process Equipment

Empty water from tanks. Remove tanks and vessels internals. Cut out
contaminated concrete from surrounding process tank and disposal as radioactive
waste.

FCF Utility Equipment

Remove contaminated FCF Utility Equipment. Cut out contaminated concrete
surrounding FCF Ultility Equipment.

Process Equipment Building

Remove contaminated portions of HHEPA and HVAC systems. Remove
demineralizer system and heat exchanger. Remove contaminated portions of
systems and fume hoods,

Utility Equipment Building

Perform a general area cleanup and remove all contaminated equipment and
materials.

Office Arcas

Perform a general arca cleanup and remove all contaminated equipment and
materials.

8.7.8 Final Facility Status Surveys

The final status survey will be conducted in accordance with a plan and implementing
procedures derived from regulatory guidance, specifically NUREG-1575 “Multi-Agency
Radiation Survey and Sitc Investigation Manual” (MARSSIM) and DOE Order 5400.5. The
approach to data collection will place the greatest survey efforts on arcas that have, or had, the
highest potential for residual radicactivity and demonstrates that all radiological parameters do
not exceed the established relcase criteria

8.7.9 Final Decommissioning Costs

Estimated final decommissioning costs arc shown in Table 18.
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Living & | Equipment Radwaste

WBS Decommissioning Man- Labor Travel Contracts Packaging Total Cost
Task Hours Cost Cost & Sunpli &

os uppices Shipping

3.01.01 [f"““‘“?'i’?“i‘?“ 148 |  s$93549| s19600|  $28902 $- |  $142,060
ccommissioning
3.01.02 Plan 630|  $69.237 $ $- s | $69,237
30103 | Ficld Operations 20773 | $1,647.623 | $575.114 | $746,740 |  $64,004 | $3,033.431
3.01.04 Final Survey 928 | $76072| s$19609|  $21,035 $-| $116716
Final Report

3.01.05 Closcout 460 | $50,353 $—|  $17,576 $-|  $67.920
Totals 23934 | $1936834 | $614331| $814254 |  $64,004 | $3429.422

The total dccommissioning costs of $4.5 million dollars includcs over $1.1 million dollars in
contingencey.

8.8 PROPOSED PROJECT SCHEDULE

To keep the escalation basis as noted previously and without a defined start date for Phase 111
(beginning with preliminary design), the project estimate and schedule were developed with
projcct design activities being initiated in FY 2006 (October, 2005). This start datc is in parallel
with Phase II testing of actual tank wastc which should be complete by about Junc or July, 2006.
Oncec the starting time for Phase I1I is established, all of the design (and subsequent activitics)
can be adjusted accordingly. Information gained from testing the actual tank waste and future
site/project planning will be factored into a revised schedule contained within the Phase 11
Process Plan update.

A basic assumption for this deployment path is that the equipment and controls sclected for a
single facility will be able to accommodate the wide ranging flow rates (0.76 gpm through

5.0 gpm) required for BV demonstration and production scale facilities. No costs have been
estimated for changeout/modification of equipment as a result of pilot plant operations.
Fractional crystallization demonstration scalc operations will be performed on simulant, then
actual tank waste, for two years to establish operating parameters for the remaining 17 years of
facility production use. The schedule terminates at the point the fractional crystallization system
begins production scale operation, Activitics for decontamination and decommissioning arc not
shown.
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APPENDIX C

DST FLOVWSHEET IN SI UNITS
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APPENDIX D

PROCESS ENHANCEMENT MODELLING INVESTIGATION
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D1.0 INTRODUCTION

The presence of high solubility sodium hydroxide, sodium aluminate, and sodium nitritc makes
the fractional crystallization and decontamination of low and medium solubility sodium salts
more difficult. The high solubility salts increase ionic strength, density, and viscosity of the
solution and hinder diffusion, crystallization, and separation. Although low sodium yiclds (25-
50%) may be obtained in wastes containing high concentrations of high solubility salts,
crystallization yield and salt decontamination can be enhanced by prior removal alumina and
sodium nitrite,

Crystallization of alumina allows increased concentration of other salts without risking formation
of alumina gel that would make scparation of mother liquor from the precipitated solids
essentially impractical, As noted carlicr, precipitation of alumina as gibbsite is very slow and the
additionally precipitated particle size is problematic for filtration.

Alumina crystallization (as gibbsitc) is currently practiced on an industrial scale in the aluminum
industry. Alumina is leached from bauxite orc at elevated temperaturc (250°F) and pressure (50
psig), then gibbsite is crystallized from a sceded solution at 150°F in a four-stage crystallization
circuit with a 24-hour residence time.

Duc to the slow growth rate of gibbsite, the solution is seeded with recycled coarse-grained
gibbsite crystals to promotc crystal growth and scparation of large (approximately 500 micron)
particles. The cooling is donc in stages to avoid gel formation on rapid cooling.

This process may be adapted to Hanford waste containing high soluble alumina. Cooling and/or
partial ncutralization of the wastc with an acid (i.c. CO;, HNOj) may be done in stages to avoid
gel formation. Recycled gibbsite crystals may be used as sced for crystal growth.

By removing soluble alumina and ncutralizing sodium hydroxide prior to fractional
crystallization, pH, ionic strength, viscosity, and density of the solution arc lowered thercby
making the crystallization and scparation of sodium salts casicr. As shown in Table D-1, alumina
removal dramatically reduccs pll, ionic strength, density, and viscosity and increases theoretical
sodium yield of the DST sample.
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Table D-1. Alumina Removal Effects.

DST
DST Base DST w/Al(OH),
Case W/AI(OH); and NaNO
Removal 2
Removal
ptl 15.85 11.55 11.56
Tonic Strength 15.5 9.86 7.48
Density (SpG) 1.88 1.58 1.47
Viscosity (cP) 7.66 3.39 2.66
Sodium Yield 71.5% 91.3% 94.1%

Lithium carbonatc may improve the crystallization ratc and stability of alumina by forming
lithium aluminum carbonate hydrate salts (LAHCS). LAHCS is a more stable (less solublc)
form of alumina which is thermodynamically favored over gibbsitc. Howcever, this material is
not currcntly produced on an industrial scale and the viability of LAHCS must be proven

experimentally.

The complementary solubility of NaNO; and NaNOj increascs the total solubility of thesc
sodium salts in solution. This phenomenon is detrimental to crystallization because increased
solubility increases the ionic strength of the solution at saturation. Increased ionic strength
increases liquid density and viscosity, thereby increasing mass transfer resistance to
crystallization and incrcasing difficulty in crystal scparation from the mother liquor.

To improve sodium salt yicld and reduce saturation ionic strength, liquid density and viscosity,
oxidation of sodium nitrite to sodium nitrate is proposed as a future development. By using
nitritc oxidation, a ternary H,O-NaNQ;-NaNQ; is reduced to a binary H,0-NaNOQj system. By
this method, the cutectic is removed, total solubility is reduced, and ionic strength at saturation is
rceduced.

As shown in Table D-1, oxidation of NaNO, to NaNO; reduces ionic strength, liquid density,
viscosity, and increases sodium salt theoretical yicld during fractional crystallization.

D2.0 LITHIUM ALUMINATE COMPLEX HYDROXIDE CARBONATE SALT
(LLAHCS) “LITHIUM DAWSONITE”

A low solubility lithium carbonate - aluminum hydroxide salt has been identified that is
thcrmodynamically favored over all basic forms (Al(OH);, NaAlO,, Al(OH);', NaAICO;{(0OH);)
of alumina. In its pure form, the compound is dilithium carbonate tetra (aluminum trihydroxide)
trihydrate (LAHCS) with the formula Li,CO;-4Al(OH);-3H;0, or simply “lithium dawsonite™,

LAHCS is formed by the reaction of lithium carbonate, aluminum trihydroxide gel, and water.
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Li,CO, + 4AHOH )Y, +3H,0 — Li,CO, - 4AI(OH ), - 3H,0 (D-1)

This solid form of alumina has an isometric crystal habit which allows separation, deliquoring,
and decontamination. A scanning electron photomicrogiaph of LAHCS is showu in Figure D-1,

Figure D-1. Scanning Electron Photomicrograph of LAHCS (U.S. Patent 5,997,836).

LAHCS also forms solid sotutions of the structure XLi;0.xCOzyALOszH,0, where 0.1 <x <
L0, L5 sy 2.5, and 0 <z <10, Thus, the L/A! ratio can vary from ~0.16 1o 1.6.

By the precipitation of alumina from the system, free hydroxide is no longer needed to maintain
sodium aluomindte in solution: By this method, high-solubility sodium hydroxide may be
neutralized and crystallized as a sodium salt thus increasing sodiam salt yield.

D2.1 LAHCS CRYSTALLIZATION

Initial Conditions:

Temperature. 40°C
HyO 10113 ¢
NayS0; 2.5
WNa,CO5 11.62

D-4
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NaNO; 10.0
NaCH 2.0
NaAlD, 2.5
Li-COs 0.8
COz. 18
Total 13235 ¢

in this example, lithium carbonate has been added to crystallize alumina as Dilithium Carbonate
Tetra(aluminum trihydroxide) Trihydrate (LAHCS), Li,CO34AOH)3-3H;0.

By the erystallization of LAHCS, sodium hydroxide is not needed to maintain alumina solubility.
Thus, carbon dioxide or nitric acid can be used to reduce free hydroxide and ionic strength. By
this method, highly soluble sodium aluminate and sodium hydroxide are removed from solution,
and most of the remaining sodium salts can crystallized from solution.

Figure D-2. Evaporation Survey.
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In this casc, alumina is initially precipitated as LAHCS (purple linc). The initial solubility
product for LAHCS? is:

KL.F!COS-IANOH”JH!O={al.l' }z{a.ﬂ }J{Q('OJ }{aOH }u{yuzo }]
={2.9710107 P850 }{0.0369 J0.0362 J* 1 ¥ (D-3)
= 9.93x107'

From the above calculation, becausc of the small solubility product for LAHCS, increasing the
lithium concentration (the limiting reagent) substantially reduces alumina solubility ({Al''}=10
0 [AI(OH), ') =10"%). By forming of LAHCS, lithium scavenges alumina from solution,

Saturation points for Na,(SO4),CO;, Na;CO5'1H,0, NaNOj occur at 51.1, 65.1, and 87.3 g of
water evaporated. An ionic strength of 20 is reached at 96.4 g of water cvaporated.

At an ionic strength of 20, a total of 3.4, 17.2, 8.6, and 3.36 g of Nay(S04);CO;, Na,CO» 1H,0,
NaNO;, and Li;COy4Al(OH);-3H,0 have crystallized. Theoretical yiclds for sulfate, carbonate,
nitrate, and alumina are 99.8, 91.2, 85.6 and 100%. Theoretical sodium yicld is 95.0%.

Thus, the addition of Li;COj; and CO; has the potential to increase sodium yicld by forming
LAHCS and Na,COj; and removing high solubility NaAl0O, and NaOH from solution.

D3.0 NITRITE OXIDATION BY HYDROGEN PEROXIDE

Oxidation of nitrite to nitrate using ozonc in Hanford waste has been demonstrated in laboratory
tests?®?%3132 Thesc tests used a high shear mixing to overcome gas-to-solution mass transfer
resistance. At this time, oxidation of Hanford waste to support fractional crystallization has not
been developed, however the technique is offered as a potential method to increase sodium salt
yicld.

Gascous ozonc has been demonstrated to rapidly oxidize sodium nitrite in Hanford waste,
However, an aqueous solution of hydrogen peroxide is far safer to handle than ozone gas. The
oxidation potential for several common oxidants is shown Table D-2%,

¥ RHO-SA-93, “Ozonation of Hanford Nuclear Defense Waste,” Rockwell International, Rockwell Hanford
Operations, Lutton, T.W,, Schulz, W.W, Strachan, d. M., Bollyky, L. J.

% RHO-C-47, “Qzone Mass Transfer and Kinetics Experiments,” Rockwell International, Rockwell Hanford
Operations, L. Joseph Bollyky and Associates and M, M., Beary.

3 WHC-EP-0701, “Laboratory Testing of Ozone Oxidation of Hanford Sitc Waste from Tank 241-SY-101,”
Westinghouse Hanford Company, Delegard, C.H., Stubbs, A. M., Bolling, S. D., December 1993,

2 RHO-SA-203-201, “Effect of pIf on the Destruction of Complexants with Ozone in Hanford Nuclear Waste,”
Rockwell International, Rockwell Hanford Operations, Winters, W. 1.

* From “Introduction to Hydrogen Peroxide™ http://www.h202.convintro/overview.
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Table D-2. Oxidation Potential for Common Oxidants.

Oxidant Oxidation Potential, V
Fluorine 3.0
Hydroxyl Radical 2.8
Qzone 2.1
Hydrogen Peroxide 1.8
Sodium Permanganate 1.7
Chlorine Dioxide 1.5
Chlorine [.4
Nitric Acid* 0.9

*Reducing to the nitrite ion.

Hydrogen peroxide is a modcrately strong oxidant which decomposcs to oxygen and walter.
Therefore, it does not introduce (or incrcase the amount of) undesirable components such as
fluoride, potassium, manganese, or chlorine in the waste™. Thus, hydrogen peroxide solutions
arc safer and simpler to handle than ozonc/oxygen gas blends.

The reaction of nitrite and hydrogen peroxide to form nitrate is shown below:
NO,”' + 11,0, » NO,” + 1,0 (D-2)

By this using hydrogen peroxide oxidation of sodium nitrite, the temary HyO-NaNO;-NaNO,
system can be reduced to a binary H;O-NaNO; system which eliminates the NaNO,-NaNO;
cutectic and reduccs the total solubility of the sodium salts in the system.

Using the same example from Scction 3.4 and Figure 9, when 10 g of NaNO; arc oxidized with
4.9 g H,0; to 13.2 g NaNO;j and crystallized by evaporation, the system follows opcrating linc
D-E. Upon evaporation of 90 g H,0, the net yicld of NaNO;j is 40.8 g NaNO;, for a net sodium
yicld of 76.6%. At the end of cvaporation, the ionic strength is 13 M Na. Thus, oxidation of
NaNO; to NaNO; reduccs total sodium solubility, ionic strength, and increases sodium yicld at
fixed ionic strength.

Used in combination with alumina removal and NaOH ncutralization, nitrite oxidation can
further lower ionic strength, liquid density, viscosity, and increase theorctical sodium salt yield.
In the case in Table D-1, theoretical sodium yicld is increased to 94.1%.

Oxidation has the potential to produce soluble transuranic compounds, such as plutonium +6.
The formation of soluble transuranic compounds is highly undesirable because precipitation (due
to pH, oxidation-reduction potential, or temperature) may form sufficient mass to cause nuclear
criticality. If oxidation were to be used to support fractional crystallization, scveral methods must
be used to prevent oxidation of TRU, These methods include using an oxidant with lower

™ Transition metals (i.e. Fe, Cu, Mn) are known to catalyze the reaction of hydrogen peroxide to the hydroxy!
radical, thereby increasing its oxidation potential. However, the catalysis reactions typically require acidic pll.
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oxidizing potential less than +2.4 volts. From the table above, hydrogen peroxide has an
oxidation potential of +1.8 volts. In this example, hydrogen peroxide does not have the oxidation
potential to oxidize Pu(+4) to Pu(+6).

Other preventative measures include filtration and separation of TRU prior to oxidation and
control of oxidation by measuring oxidation-reduction potential to maintain the system to below
the potential to oxidize TRU compounds.

Once oxidation and crystallization is complete, the system is returned to redox ncutral by the
addition of sodium nitrite or blending with raw waste, as required by the tank farms acceptance
critcria. The benefit of oxidation for the improvement of sodium yicld occurs only when the
initial sodium nitritc substantially exceeds the amount needed to mect the tank farms acceptance
criteria.

D-8
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E1.0 BASE CASE

Initial Conditions:

Temperatuie 40°C
H;0 100.0 g
Na,SO4 2.5
NaCOs 5.0
NaNQ; 10.0
NaOH 76
Total 1245 ¢

Figure E-1 illustrates changes in ionic strength, ionic activities, solubility products, and the type
and amount of crystals that form during batch evaporative crystallization of the sampie. Because
of the large span in the numbers, solubility products are shown on a natural logarithmic scale.

Figuré E-1. Evaporation Survey
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The initial ionic strength is 4.4. Ionic activities of Na*, SO4?, COy2, NO;™, OH™ and H,0 arc
2.56, 0.00378, 0.01048, 0.4625, 1.699, and 0.8855 respectively. Using the calculations shown
above, the initial saturation ratios for Nag(SO,4);COs(s), Na;CO;-1H,0(s), and NaNOs(s) arc

0.00425, 0.0861, and 0.0752 respectively; the salts are undersaturated at the initial conditions.

Upon cvaporation of 50 g H,0 and an ionic strength of 8.5, Nag(S04),CO; becomes saturated.
That is, the calculated solubility product equals the saturated solubility product of 1.007 x1072,

K pasisonzcos = {a'Na }6 {asm }2 {acos }

(E-1)

={6.638 }° {0.00377 }{0.00806 }=1.007x10"*
S vascsonzcos = K carc ! Ksr =1 (E-2)
In S yes(sospzcos = 0 (E-3)

This is shown by the red dashed line in the diagram. As the system becomes concentrated, the
solubility product increases in proportion to the sixth power of the sodium activity to the
saturation linc. Beyond saturation, Nag(SO5)CO; begins to crystallize at a rate to maintain the
solubility product equal to 1.007x1072, This is shown by the solid red linc in the diagram.
Although sodium sulfate is removed from solution at twice the rate of sodium carbonate, the
solubility product for Na(S0O4);CO; remains constant afler saturation.

Upon cvaporation of a total of 61 g of water and an ionic strength of 10.4, 2.5 g of Nay(S04):CO;
has crystallized; Na,CO;-1H,0 becomes saturated when its solubility product cquals 7.108 x 10
This is shown by the blue dashed line in the diagram.

At Na,COj;-1H,0 saturation:

K ya2cosmae = {a'Na }2 {acos }{auzo }= {8-952 }2 {0-01292 }{0-6868 } (E-4)
=7.108x10"

and

K vastsonacos = {a' we § {00 Flaco }= {8-952 ¥{o.00123 }*{0.01292 } (E-5)
=1.007x1072

Beyond this point, NaCO5-1H,0 co-crystallizes with Nag(SO4),COj at rates to maintain both
solubility products constant.

E-3
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Upon evaporation of 70 g H;0, 3.1 g of Nay(S0,),CO;3 and 2.7 g Na;CO;3-1H;0 have
crystallized, NaNO; becomes saturated at an ionic strength of 11.4. This is shown by the green
dashed line. At this point, the solubility products for three salts arc equal to the saturated valucs.

K yovos = 1o Kt vos } = {12.867}1.2267} = 1.579x10' (E-6)

and

K ya2c0mm10 = {{’Naz }{a(‘O] }{aﬂza} = {l 2'867} ? {0'0071 I}{0°60435} (E-7)
=7.108x10™

and

K pasisos2cos = {a’ Na }6 {a' 504 }2 {aros } (E-8)

= {12.867 }*{0.00056 }*{0.00711 }=1.007x10"2

Beyond this point, the three salts co-crystallize. The remaining salt NaOH is highly soluble
(128 g NaOH/100 g H,0 @ 40°C). Further evaporation causcs a dramatic increasc in ionic
strength because of increasing sodium ion activity duc to the concentration of unsaturated NaOH.

For this study, an ionic strength of 20 M will be used as an endpoint of evaporation. The actual
practical limit for evaporation may be more or less than 20 duc to the density and/or viscosity of
the solution.

After evaporation of 90.4 g H,0, at an ionic strength of 20, sodium activity has increased to 200.
At this point, total 0of 3.4, 4.2, and 9.7 g of Nay(S0,),CO;, Na;CO;-1H,0, and NaNO; have
crystallized. Theoretical yields for sulfate, carbonate and nitrate arc 98.5, 99.6, and 97.9%.
Theoretical sodium yicld is 57.9%.

To improve the yield of sodium salts by evaporative crystallization, carbon dioxide (CO;) may
be used to convert sodium hydroxide to sodium carbonate (Na,COj;) which may be removed as

Na,CO;:1H;O by evaporative crystallization.

2NaOIl +CO,(g) = Na,CO, + I1,0 = Na,CO, - 111,0(s) (E-9)

To illustrate the effects of carbonation on ionic activitics and solubility products, the sample in
Example 1 is reacted with 2.75 g of CO; prior to evaporation. The resulting composition is as
follows:
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E2.0 CARBONATION OF NAOH

Initial Conditions:

Temperature 40°C
H,0 10113 ¢
Na,SQ, 2.50
Na,COs 11.62
NaNO; 10.00
NaOH . 2.00
Total 127.25 ¢

As inthe previous example, the salts are undersaturated at the initial conditions. A survey of the

evaporation is shown in Figure E-2.

Figure E-2. Evaporation Survey.
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As indicated in the diagram, more Na;CO;:1H,O crystallizes and ionic strength is reduced over
the basc casc above 80 g H;O evaporated. The carbonatc activity has increased due to the higher
initial Na;CO; concentration. However, sodium activity is reduced (duc a lower sodium activity
cocfTicient n,). Thesce effects partially offsct in the calculation of solubility products.

Upon cvaporation of 55 g of water and an ionic strength of 10.2, Na(S0,),CO; becomes
saturated.

K pastsonzcon = {am }6 {asm }2 {a co3 } (E-10)
= {4.06497 }*{0.00777 }*{0.03697 }=1.007x107?

Nag(S0,),CO; saturation occurs slightly later than the previous example duc to the cffccts noted
above - (higher ticp; but lower ay,).

After cvaporation of 60 g of water and an ionic strength of 11.0, 2.23 g of Nay(504),CO;
crystallizes and Na,CO;-1H,0 becomes saturated. This is slightly lower (1 g) than Example 1,
again because the higher carbonate activity is offset by the lower sodium activity. The solubility
products arc:

K yarcos1m20 ={aNn }2 {ac'o, }{au,o }
2

(E-11)
={4.31987 }{0.04515 }0.85736 }=7.108x10"'

and

K yasisonzen = {a'.vva }6 {asm }2 {a' co3 }

(E-12)
={4.31987 }*{0.00586 }*{0.04515 }=15.79

Na, (804);CO; and Na,CO;-1H,0 co-crystallize to maintain both solubility products constant.
The increasing sodium activity (duc to NaNO;) during cvaporation drives the crystallization
reactions “to the right”.

Upon evaporation of 84.5 g H;0, 3.3 g of Nag(S0,),CO; and 10.2 g Na,CO;-1H,0 have
crystallized, NaNO; becomes saturated at an tonic strength of 12.9. This is a significantly higher
cvaporation amount (14 g) than Example 1, because much of the sodium has been depleted from
the aqucous phase by precipitating Na,CO;-1H,0. At this point, the solubility products for three
salts are equal to the saturated valucs.

Kaxos = 10n Hetnos }=1{7.4262 }2.1260 }=1.579x10" (E-13)
and
K vercosinzo ={ah’a }z{acos }{anzo } (E-14)

={7.4262 }{0.0190 }{0.67841 }=7.108x10"

E-6
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and

K yaecsonzcos = {aNa }6 {asm }2 {acos } (E-15)
= {4262 }{0.00178 {0.0190 }=1.007x10

Beyond this point, the three salts co-crystatlize. The remaining 2 g of NaOH is highly soluble
and stays in solution. However, with the amount of NaOH reduced by carbonation, ionic strength
docs not incrcasc as dramatically as in Example 1.

At an ionic strength of 20 M, a total of 3.4, 12.5, and 9.9 g of Na,(S04);CO3, Na;CO;-1H;0, and
NaNO; have crystallized. Theoretical yields for sulfate, carbonate and nitrate arc 98.3, 99.9, and
99.4%. Theoretical sodium yicld is 88.0%.

Thus, carbonation can incrcase sodium yicld by converting highly soluble NaOH to less soluble
Na,CO; which can be crystallized as Na,CO;-1H,0. In this case, the sodium yicld increased 57.9
from to 88.0% at an ionic strength of 20 M.

The effccts of the complementary solubility of NaNQ,-NaNO; will de demonstrated in the next
example. If the initial composition of sodium nitrate was split (on a molc basis) between sodium
nitritc and sodium nitrate, the initial conditions would be:

E3.0 NANO,/NANO3 EUTECTIC

Initia! Conditions:

Temperature 40°C
L0 101.13 g
Na,S0, 2.50
Na,CO; 11.62
NaNO; 4.06
NaNO; 5.00
NaOH _2.00
Total 12631 g

As shown in Figure E-3, Nay(S04):CO; and 10.2 g Na,COs-1H,0 have similar saturation points
and yiclds as in Example 2. However, the saturation point of NaNO; has shifted to the right
because of the lower initial concentration of NaNQ;.

K yawos = {am }{awos }= {l 1.6588 }{ 1.3545 }= 15.79 (E-106)

Saturation of NaNO; occurs after 85.3 g H,0 evaporated and an ionic strength of 14.88. At this
point, ionic strength begins to rise rapidly duc to the complementary solubility of NaNO; and
NaNO;.
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Figure E-3. Evaporation Survey.
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At an fonic strength of 20, sodium nitrite has not reached saturation. A total of 3.4, 12.5, and
4.0 g of Nag(S04):CO3, NeyCOy 1H,0, and NaNO; have crystallized. Theoretical yields for
sulfate, carbonate and nitrate are 97.8, 99.0, and 80.1%. Theoretical sodium yield is 70.9%.

Thus, the presence of sodium nitrite decreases sodium and nitrate yield because of the entectic it
forms with sodium nitrate. To improve the yield of sodium and nitrate, oxidation may be used to
convert sodium nitrite to sodium nitrate.

NaNO, +H,0, > NaNO, + H,0 (E-17)
By this method, the composition of Example 3 would be converted to the composition of
Example 2 (with slightly more H,0), and the theoretical sodium and nitrate yield would improve
to 88.0 and 94.4% 4t an ionic strerigth of 20 M.

E4.0 SODIUM ALUMINATE

Imtial Conditions:

Temperature. 40°C
HxO 1000 g
' NﬂzSO4 2.5

E-8
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Na,COs 5.0
NaNO3 10.0
NaOH 7.0
NaAlO; 2.5
Total 127.0¢

As shown in Figure E-4, alumina is soluble (as the AI(OH);" jon) during evaporation and
crystaliization of Nag(SOy4),CO;3, NayCO: 1H;0, and NaNOs. These salts erystallize at the same
saturation points and produce the same vield as in Example 1. During this period, the solubility
of alumina increases because the increasinig hydroxide activity. The solubility product of gibbsite
is:

Figure E-4. Evaporation Survey.
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Initially, the saturation ratio for gibbsite is 0.93. Gibbsite solubility increases during the
evaporation because-an increasing AOH)," activity is offset by a greater increasing OH”!
activity. This is shown by the orange dotted line in Figure 12; Thus, gibbsite becomes more
soluble during evaporation of this sample because of increasing hydroxide concentration,

After evaporation of 84 g of water to an ionic strength of 13.0, sodium aluminate 2.5 hydfate

(Nay AL, Oy 2YH,0) reachies saturation and begins to crystallize. At this point, the solubility
product for Na,AlLOyx24H,0 is:
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~1.5

Koy = {&Na }{azﬂ(oﬂ)fl }2{?’;{20 }

. . | (E-19)
=1{54.857 }'{0.9141 } {06.3613 | =1.156x10"

As the fonic strength redches 20 M, a total of 3.4, 4.7, 9:9, and 2.9 g of Nag(S0,).COs,

NayCO51H,0, NaNOs, and Nay AL, 24,0 have crystallized. Theoretical yields for sulfate,

carbonate, nitrate, and alumina are 98.2. 99.6, 98.9, and 46.1%. Theoretical sodium vield is

56.6%.

As shown in Figure B-5 (as in Example 1), the uncrystallized sodium exists as highly soluble

NaOH. Te increase sodium yield, the sample is carbonated (as in example 2) to convert NaOH o
'NBQCO‘:B

Figure E-5. Evaporation Survey.
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ES.0 GIBBSITE PRECIPITATION

Initial Conditions:

Temperature 40°C
H,0 10113 g
Na,SO; 2.5
Na2C03 11.62
NaNO; 10.0
NaOH 2.0
NaAlO; _25
Total 12075 g

In this example, carbon dioxide has been added to convert most of the NaOH to Na,CO3, and
gibbsite is precipitated.

Gibbsite has very slow crystal growth rates. To fully cquilibrate gibbsite at 40°C may require as
much as 264 hours.>® Thus, a fully developed crystalline gibbsite may not form during
carbonation. It has been demonstrated that rapid carbonation can cause alumina gel formation.
For this example, gibbsite is considered to be initially precipitated.

Upon evaporation, this sample exhibits the same saturation points for Nag(SOy),CO; and
Na;CO;:1H,0 as Example 2. The sodium nitrate saturation point is shifted slightly to the left
because of the added sodium from NaAlQ; in the starting material.

During this period of evaporation, alumina becomes more soluble because of increasing OH
activity as in Example 4. The saturation ratio for gibbsite reduces below 1.0 at 77.6 g of H,O
cvaporated and an jonic strength of 12.8. Beyond this point, gibbsite is undersaturated and all
alumina is in solution until the Na,Al1;04-22H,0 saturation point is rcached. The
Na,Al;0,-2%H,0 saturation point occurs at 91.5 g H;O evaporated and an ionic strength of 15.0,

At an ionic strength of 20 M, a total 0f 3.4, 4.7, 9.9, and 2.9 g of N2,(S0;):CO;, Na,CO;-1H;0,
NaNQ;, and Na;Al,04-2%2H,0 have crystallized. Theoretical yiclds for sulfate, carbonate,
nitrate, and alumina arc 98.3, 99.9, 99.4 and 48.9%. Theoretical sodium yield is 87.0%. As in
Example 2, carbonation has increased sodium yicld by converting NaOH to Na,CO;.

35 Thermochemical Propertics of Gibbsite, Bayerite, Bochmite, Diaspore, and the Aluminate Ion Between 0 and
350C. NUREG/CR-5271, TI189 006046 J. A. Apps, I. M. Neil, C.-I1. Jun. Lawrence Berkeley Laboratory.,

% »Aluminum Precipitation from Hanford DSSF,” Wiley, J.R., University of Texas -~ Permian Basin, Contract
QW098921, September 30, 1993.
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K6.0 SST EARLY FEED

A simplified composition of the SST Early Feed simulant is shown in Figure E-6, These
compounds-are the dominant sodium salts in the system. Trace components KOH, Na(l,
NazPQy, Na,CrQy, NaF, NayCy04, CsOH are included in the thermodynamic model, but not
shown in this example for simplicity.

Figure E-6. S8T Early Feed Survey 40°C.

SSTT EVAPORATION SURVEY
40C.
R ¥ ] p— . e e . . 35
0GR - ; i 3 . . :
o fe o ENBB(SOM2 00N i
e : e e KNa2CO3 LD
r%b 3 [0EAQT - . 2 : " LoagT | - KNaNEY3
s . . :
g L P o e KNENO)
LB e : Fee e KNBARR
ooy . : 3 .
e (3 2005401 - - : 0 e KAKOHI
= L ; " ;
i ) 7 : ,J e NaGU B4 2003 )
E _ e e NaZC03. L HIOHS)
% LOGEAGT e - L e e R e I NaNON)
. B AN et I S, e .
P - i P e NaNO(s)
: wﬁ“fuw/o/rx LINE-—" ? o e NEATROAZVHOG)
0005400 4 e et gt e )
e s st Skl Sl EEXa B § AN T RENGTH
LOORFGY o - 1 S— s
- W@ 30 4w s s 70 80 Bh Wio
H,O EVAPORATED ()

Initial Conditions:

Temperature 25°C
HO 100 g
N2,80; 2.66
NayCO4 7.38
NaNGO, 7.86
NaNQO3 46.11
NaOH 13.26
ANOH); 6.06
Total 131.21 g
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In comparison to the earlier examples, this material is relatively high in NaNO;. An evaporation
survey at 40°C (Figure E-6 above) indicates that burkeite is saturated a the initial conditions and
NaNO; reaches saturation and crystallizes between Nag(S04),CO; and Na,CO;-1H0.

In this example, the theoretical yields for sodium, sulfate, carbonate, nitrate, nitrite, and alumina
evaporated 1o an ionic strength of 20 arc 76.1, 99.6, 99.5, 99.1, 92.5, and 90.2%. The 24%
sodium yield loss is largely duc to highly soluble sodium hydroxide. The effect of sodium
hydroxide on ionic strength can be seen by the inflection of the curve above 80 g of H;O
cvaporated.

Becausc of kinetic limitations, it may not be desirable to co-crystallize sodium nitrate with
sodium sulfate and carbonate. Sodium nitrate is a fast growing crystal and has temperature
dependent solubility. Burkeite and carbonate monohydrate arc slow-growth crystals and have
rctrograde tempcerature solubility.

E7.0 SST LATE FEED
A simplificd composition of the SST late feed simulant is shown below. As in the carly feed

cxample, trace components KOH, NaCl, Na;PO,, NayCrQy, NaF, Na,C;0,, CsOH arc included
in the thermodynamic model, but not shown in this study for simplicity.

Initial Conditions:

Temperature 25°C
H,O 100 g
Na,SO, 2.63
Na,CO; 2.78
NaNQ; 0.53
NaNQ; 14.82
NaOH 0.15
NaF 0.46
Al(OH), 034
Total 121.71 g

In comparison to the SST Early Feed, this sample has a higher concentration of sodium fluoride,
a near cqual amount of sodium sulfate, but lower concentrations of sodium carbonate, nitrate,
and hydroxide. At the initial conditions, 90% of the alumina would be insoluble at 25°C.

Figure E-7 is an evaporation survey at 40°C.
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Figure E-7. SST Late Feed Evaporation Survey 40°C.
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The initial ionic strength is 2.7, At the initial conditions, 0.30 g of gibbsite (Al{QH)s3) are
precipitated. Upon evaporation, gibbsite becomes more soluble due to the increasing free
hydroxide and ionic strength.

In this example, the solution salts do not reach saturation until 38 g of water are evaporated. It
may be beneficial to pie-evaporaté excess water from this material prior to crystallization to
increase available waste tank volume.

11 this example, schairerite (Na;FSOy) is the first sodium salt to reach saturation at 38 g of water
evaporated and an lonic strength of 4.4. By forming the double salt schairerite during evaporative
crystallization, sodium sulfate scavenges sodium fluoride from the aqueous phiase’. The
solubility product for schairerite at 40°C is:

Koo, = 1 Pl N, 1= 11786831 10.0666610.01132} =1.00028 (E-20)
The next salt to reach saturation is ijutke'i’t'e at 76 g of water evaporated and an ionic strength of
10.4, Sodium nitrate saturates at 85 g of water evaporated and an ionic strength of 17.3. Sodium
carbonate monohydrate reaches saturation at 93 g of water evaporated and an ionic strength of
17.2.

7 T'he crystallization and separation of schairerite is beneficial to Hanford waste handling; sodium fluoride co-
precipitates with sodium phosphate i the waste to form low solubility sodium fluoride phosphate non-decahydrate-
{Na/F(PO}» 19H,0). This highly-hydrated double salt removes water from solution and has low sclubility,
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Becausc of the low initial sodium hydroxide and nitrite, an ionic strength of 20 is not rcached
until 98 g of water are evaporated. At this point, the theoretical yiclds of sodium, sulfate,
carbonate, nitrate, and fluoride arc 88.2, 99.9, 85.0, 92.2, and 99.7%. The remaining sodium
yicld loss is mainly due to soluble sodium nitrate and carbonate above an ionic strength of 20.
Alumina yield has dropped to 13% duc to increased solubility.

As in the SST carly feed cxample, it may be beneficial to conduct the SST late feed
crystallization in two stages: one higher temperature stage to crystallize sodium sulfates and
carbonates and a lower temperature stage to crystallize sodium nitrate. This method may bencfit
the crystal growth rates of schairerite and burkeite.

Howcvecr, in this case, because of the low initial sodium carbonate concentration, higher
temperatures (60-100°C) do not shift the sodium carbonate monohydrate saturation point ahead
of the sodium nitrate saturation point. High temperatures can causc the transition of sodium
carbonate monohydrate to anhydrous sodium carbonate, Thus, in this case, it would not be
beneficial to crystallize sodium carbonate at higher temperatures.

E8.0 DST FEED

A simplified composition of the DST simulant is shown below.

Initial Conditions:

Temperature 25°C
H,O 100g
Na,SO, 0.18
Na,CO; 1.21
NaNO; 13.99
NaNO; 16.61
NaOH 16.88
NaF 0.08
NaCl 1.19
KOH 1.92
ANOH), 7.91
Total 159.98 g

Compared to the previous examplc, the DST simulant has lower concentrations of sodium
sulfate, carbonate, and fluoride. It has higher concentrations of sodium nitrate, nitrite, hydroxide,
chloride, and aluminum and potassium hydroxide.

Figurc E-8 is an evaporation survey at 40°C.
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Figure E-8. DST Evaporation Survey.
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The initial jonic strength of the system is 8.9 M: At 40°C, no major salts are initially saturated;

and there is sufficient free hydroxide to dissolve all of the alumina a5 sodium aluminate. As the
system 1s evaporated, the ionic strength increases rapidly due to the presence of high sotubility

sodium hydroxide and aluminate,

During evaporation, major salt_'s NaNO;, NaNQs, NasAlO42%6H50, NayCO5 1H,0, NaCl, and

KNO; crystallize; minor double salts schairerite and burkeite co-crystatlize. For this study, only
the major salts are considered for simplicity of the example.

The first major salt to reach saturation is sodium nitrate at 40 g of H,0 evaporated and an jonic
strength of 14.9. Sodium carbonate and sodium nitrite reach saturation at 49 g of H;O evaporated
and an 1onic strength of 16.7. At this point, the system reaches the NaNQO3-NaNO; invariant, and
the ionic stréngth begins to level out.

Sodium chloride reaches saturation at 60 g H,O evaporated and an ionic strength of 17.1.
‘Sodium aluminate reaches saturation at 62 g H,O evaporated and an ionic strength of 17.3.
Potassium nitrate reaches saturation at 70.7 g H,O evaporated and an ionic strength of 17.3.

The solubility products for NaCl and KNOs-at 40°C are:
Kpuer =1y, Hoe 1= 132.5550211.13676} = 37.003 (E-21)

K oo, = 10 et o, = (1.99815H0.43 141} =1.0958 (E-22)
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At an ionic strength of 20, the amounts of sodium carbonate monohydrate, sodium nitrate,
sodium nitrite, sodium chloride, sodium aluminate, and potassium nitrate are .28, 15.26, 13.14,
1.10, 9.642, and 0.866 g. The theorctical yiclds of sodium, potassium, sulfate, carbonate, nitrate,
nitrite, chloride, and aluminate are 56.0, 25.0, 94.1, 95.7, 91.8, 94.9, 92.6, and 91%. The primary
sodium yield loss is duc to the high initial concentration of sodium hydroxide.

To increase sodium yield, reduce ionic strength, liquid density, and viscosity the DST sample
may be initially treated to remove alumina as gibbsite, free hydroxide neutralized to Na,CO; or
NaNQj;, and NaNO; oxidized to NaNO,.
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APPENDIX F

PRELIMINARY ALARA EVALUATION FOR THE FRACTIONAL
CRYSTALLIZATION SYSTEM
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Preliminary ALARA Evaluation of the Fractional Crystallization System

List of Acronyms and Symbols

ALARA As Low As Rcasonably Achicvable
DFCS Dcmonstration Fractional Crystallization System
DST Double Shell Tank

SST Single Shell Tank

DR dosc rate

cm ccntimeter

g gram

ft’ cubic fect

cc cubic centimeter

wi% weight percent

kg kilogram

p photon

1 liter

em’ squarc centimeter

hr hour

scc second

mm millimeter

min minute
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Preliminary ALARA Evaluation of the Fractional Crystallization System

1.0 OBJECTIVE

This cvaluation is based on a prcliminary conceptual design of the Fractional Crystallization
System and as such will be revised as additional dctail on design and facility operation emerge.
The primary objective of this document is to provide an estimation of the total dose received by the
opecrations and maintenance staff working at the DFCS over a one ycar period during normal
conditions. The sccondary objective of this document is to provide recommendations that will
reduce the dosc below 500 person-mrem per ycar and achicve appropriate ALARA goals. The
design process includes an ¢stimate of the occupational dose assessment for the facility. ALARA
cvaluations arc performed and documented to determine cost-cffective design enhancements to
reduce cxposures, This cvaluation docs not address airborne containments, radioactive cffluent
rcleascs or any accident conditions or scenarios.

2.0 DMETHOD

Dose rates are calculated using the computer code MicroShield. The input and output files are
attached. Radiation shiclding is selected to minimize personnel occupational cxposures based on
facility occupancy for normal operations and facility maintenance. Personnel exposures arc
estimated based on similar facility experience for access requirements, and standard shiclding
mcthods arc uscd to cstimate radiation ficlds. The mecthod is iterated to minimize the number of
personnel that have the potential of receiving 500 mrem/yr.

3.0 INPUTS

The Dosc rates at various distances from the DFCS facility are calculated using MicroShield. The
parameters for the computer code calculation are located in the following sections and in Appendix
A through Appendix C.

3.1  Gceometry

The general arrangement and overall geome try of the various systems and components were
considered in this evaluation. Based on the location and the source term contained within the
Ist Stage Crystallizer, it was sclected as the most limiting component for shiclding design
considerations. For modeling purposes the following assumptions were used: (1) A cylindrical
geometry of 4’h x 6°d was used to approximate the area within the crystallizer that contains the
~830 gallons of liquid as stated in the DFCS System Description. (2) The volume used in the
Microshicld model was 113ft* (844 gal.) which compares favorably to the preliminary design
opcrating capacity of the crystallizer. (3) There are other components, tncluding recirculation
piping that will contain radioactive liquids but for the purposes of this limited evaluation they
were not included in this evaluation. (4) The Crystallizer will be constructed of 304L stainless
steel (0.5” thickness). Sce attached data sheets for geometrics used in dose calculations
including crystallizer dimensions, shicld thicknesses and configurations.
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Preliminary ALARA Evaluation of the Fractional Crystallization System

3.2 Materials

The Crystallizer will be constructed of 304L stainless steel (0.5” thickness). A density of (1) g/ce
was uscd for the source material. Shield walls were based on concrete with a density of 2.4 g/ce.
Sec attached data shects for specifications on materials used in dosc calculations including
crystallizer material, shicld materials and associated densitics.

3.3  Sourcc Description

For the purposc of this preliminary dosc estimatc and shiclding evaluation, the source of the
maximum expected dose rate was assumed to be the DFCS crystallizers. There are two (2)
possible feeds into the DFCS, the Single Shell Tanks (SSTs) and the Double Shell Tanks (DSTs).
They have expected concentrations of up 2.244 Ci/L and 8.53 Ci/L respectively. For the purpose
of this cvaluation, the higher feed source(DST) was used in the model. The DST PFD, the
composition of Strcam 8§ (“FLASH”) in the crystallizer is in three phases: liquid, solid, and vapor.
The mass of the liquid phasc is 35.26 1b/hr, the solid 31.03 1b/hr, and the vapor 33.55 lb/hr. The
total mass is the flow rate times the residence time. So the slurry composition (liquid + solid) is
46.38w1% solids. The solids mainly consist of sodium nitrate (74%), and sodium carbonate.
Water (17%) with a density of 19.027 Ib/gal. The DFCS crystallizers will contain radioactive
liquid with a concentration of up to 8.53 Ci/liter of Cs" mixed into a slurry and introduced into the
crystallizer. The resulting concentration will be ~5.11 Ci/L of Cs" activity assuming (8.53
Ci/LY*(2.44 gal liquid} /(2.44 gal liq + 1.63 gal solid) = 5.11 CV/L (~40 % reduction). Each
crystallizer is designed to operate with a minimum liquid volume of 530 gallons, a normal liquid
volume of 830 gallons, and a high liquid level of 1140 gallons. This does not include the volume
of tank wastc that is contained in the recirculation piping. A rough estimate of the quantity of
material that is contained in the recirculation piping is 100 gallons. Bascd on the volume and
concentration of Cs'*’, up to 16,300 Curics may be present with the crystallizer vessel during some
cvolutions. The DFCS crystallizers produce sodium salt crystals from dissolved salts in tank
waste. The crystals are produced by evaporating water from tank waste solutions and growing
crystals in the supersaturated solution. The sizes of the crystallizers are based on the required
residence time for growing scparable crystals. The crystallizers are designed to allow thorough
washing and cleaning to remove accumulated deposits.

4.0  ASSUMPTIONS

e The First Stage Crystallizer is assumed to be the highest dosc rate component with volume
estimated at ~845 gal.
e Personne! entrics are limited to designated arcas for tours & inspections.

e Prior to entry into the facility high dose rate (DR) material is flushed from components, vessels
and piping. Dosc rates are verified via remote rad monitoring instrumentation.

o Cs" is the principle nuclide and the maximum concentration of Cs137 does not cxceed 8.5
Ci/L and the cffective concentration of the slurry is ~5.11Ci/L

e Only occupational workers have access to the facility and fenced surrounding arcas.

o The facility is operated remotely.
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Preliminary ALARA Evaluation of the Fractional Crystallization System

e 2 Opcrators/ 8hr shift.

e 2 Maintenance techs/crew
e Working hours/shift = 8.
o Working days/year = 250.

¢ All matcrials that contain, may contain, or contact tank wastc or treated tank waste arc
constructed of 304L stainlcss stecl.

e A whole-body dosc ACL (administrative control limit <500 mrem/yr) to aid in keeping
radiation doscs ALARA was established. This ACL is substantially below the DOE ACL of
2000 mrem/yr per person for all DOE activities

e Rostricted arca fence line is 30' from exterior surface of DFCS.

¢ Control room is located >30' from DFCS.

50 CONFIRMATION REQUIRED

None.

6.0 COMPUTER PROGRANM IDENTIFICATION

MicroShicld v5.05 (5.05-00538) has been verified and validated for the use of calculating dose
rates.

7.0 RESULTS

The MicroShicld calculated dosc rates at various distances from the 1% Stage Crystallizer
processing feed from the DSTs were used for this estimate. The results can be seen in Summaries
provided in Appendix A, B and C. Dosc points were sclected at various locations to determing the
dose rates at locations where facility staff would be expected to perform their dutics. The locations
and cstimated durations are provided in the Table below and scrve as the basis for this estimate. A
general arrangement sketch, Appendix D, is provided to illustrate the relative locations used and
arc noted as Zones A, B and C,

The total individual estimated annual exposurc for thc operations and maintenance staff is
approximately 211 mrem per year per for each individual and a total collective dosc of 2113
person-mrem annually. It should be noted that this dose only includes dircet exposure and doces not
account for dosc received from other potential exposure pathways.

In addition to the dose estimates for processing the DST feed, an evaluation was performed using
the expected source term associated with the feed from SSTs. The results of that evaluation were
annual exposures to opcrations and maintenance personnel of approximately 73 mrem per year per
for cach individual and a total collective dosc of 728 person-mrem annually. It should be noted
that this dosc only includes dircct exposure and docs not account for dose received from other
potential exposure pathways. For comparison purposcs the difference between the projected
annual exposure to the DFCS personnel at a facility handling SST feed verses DST is directly
proportion to Cs'*’concentration in the feed. The lower source term associated with processing the
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. feed from the SSTs results in doses that are approximately 35% of those expected from the DST
source term.

80 CONCLUSION

The following tables are an cstimation of expected occupational dosces at the DFCS during normal
operations. No allowances or design considerations have been incorporated for accident scenarios.
Table 1 represents DST doscs and Table 2 represents SST doses.

Projected Occupational Doses for DFCS Ops. & Maint. Activities (DST Feed)

dose (mremTEDE)
GAdose Occu. indiv.
rate time indiv | collect | annua | Collect
location Task Description (mR/hr) hrs. #staff | daily | daily | annual
A Operator tours & inspection {1/shift) 6 0.125 6 0.27 1 188 1125
A Preventive Maintenance (daily) 6 0.125 4 0.27 2 188 750
B Operator tours & inspection (4/shift) 0.07 0.5 6 0.01 2 9 53
B Preventive Maintenance (daily) 0.07 05 4 0.01 3 9 35
C Operator tours & Inspection (4/shifty  0.008 75 6 0.02 0 15 90
C Preventive Maintenance (daily) 0.008 7.5 4 0.7 1 15 60
Ops total 211 1268
Maint. Total 21 845
Total Crew 423 2113

. Table 1

As scen in Table 1 the projected individual doscs for the staff is less than 500 mrem/yr TEDE
bascd on the stated dose rates resulting from the DST feed source and occupancy times . These
cstimates will be revised as more detailed design and operating parameters evolve.,

Projected Occupational Doses for DFCS Ops. & Maint. Activities (SST Feed)

dose (mremTEDE)
GA dose Occu. indiv.

rate time indiv | collect | annua| Collect

location Task Description {(mR/hr) hrs. #staff | daily | daily 1 annual
A Operator tours & inspection (1/shift) 213 0.125 6 0.27 2 67 399
A Preventive Maintenance (daily) 213 0.125 4 0.27 1 67 266
B Operator tours & inspection (4/shift) 0.02 05 6 0.01 0 3 15
B Preventive Maintenance {daily) 0.02 0.5 4 0.01 0 3 10
C Operator tours & inspection {(4/shift) 0.002 7.5 6 0.02 0 4 23
C Preventive Maintenance (daily) 0002 = 75 4 0.02 0 4 15
Ops total 73 437
Maint. Tota 73 291
Total Crew 146 728

Table 2

. As scen in Table 2 the projected individual doses for the staff is less than 500 mrem/yr TEDE
bascd on the stated dose rates resulling from the SST feed source and occupancy times. Expected
dosc rates and expected personnel exposure are approximately 35% of that of the DST feed shown
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in Table 1 above. These estimates will be revised as more detailed design and operating
parameters cvolve,

9.0

RECOMMENDATIONS

Utilize remote video monitoring equipment to reduce entry occurrences into facility.

Place valve operators, gauges, ctc. in low dosc arcas to the greatest extent practical to lower
personnel exposure.

Ensure ventilation system design is adequate to maintain DFCS under negative pressure and to
provide an acceptable monitored release pathway.

A more dctailed and comprchensive ALARA cvaluation should be performed that will account
for direct exposure from the source term present in all systems and components.,

An analysis/evaluation of all other potential exposure pathways should be performed to ensure
the facility design mects all applicable DOE design requirements.

A dctermination must be made as to the accessibility and occupancy factors for the DFCS
fence line. For the purpose of this evaluation, it is assumed that only occupational workers have
access to that arca. However, if a member of the public has access to the DFCS fence linc, it
may be nccessary to extend the fence further from the DFCS facility to ensure that exposure to
a member of the public dose not exceed 100 mrem/yr..

10.0 REFERENCES

1)
2)
3)
1)
5)

DST Fractional Crystallization System Conceptual Design, COGEMA-DWG-002
DFCS General Arrangement Conceptual Skeich, 08/11/05

DFCS Preliminary Safety Analysis, 05/05/05

MicroShield User’s Manual; version 5, Grove Engincering 1992-1998

Calculation and Measurement of Direct and Scattered Gamma Radiation from LWR Nuclecar
Power Plants, ANSI/ANS-6.6.1 — 1987.

11.0 CALCULATION REVISIONS

None.
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Appendix A

MicroShicld input and output

st
1 Stage Crystallizer w 2’ shiclds
FCS#1
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Appendix B

MicroShicld input and output

1st Stage Crystallizer w/o shiclding
FCS#2
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Appendix C

MicroShield input and output

Ist Stage Crystallizer w/ shiclding at fence line
FCS#3
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Appendix D

DFCS Facility General Arrangement Drawing

Dose Points
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Summary Costs

Contingency

Contingency

G-2

Item Costs Amount Dollars Total

Support :
Project Management $ 4,999 424 10% $ 499942 % 5,499,366
QA $ 881,580 5% $ 44,079 $ 925,659
EH&S $ 493,824 5% $ 24691 % 518,515
Information Management 3 171,418 5% 3% 8571 % 179,989
Regulatory and Licensing $ 1,119,248 10% % 111,925 § 1,231,173
Subtotal $ 7,665,494 $ 689,208 $ 8,354,702

Engineering ‘
Title | Design $ 2,183,019 20% $ 436,604 % 2,619,623
Title I Design $ 5,359,231 35% $ 1875731 §% 7,234,962
Title Il Design $ 581,116 10% $ 58,112 $ 639,227
Subtotal § 8,123,366 $ 2,370,446 $ 10,493,812

‘Construction -~ =
Site Work $ 566,401 25% § 141,600 $ 708,001
Building 3 5,078,288 45% $ 2285230 % 7,363,518
Process Equipment $ 6,045,396 40% $ 2,418,158 % 8,463,554
Piping and Fittings $ 417,468 30% $ 125,240 % 542,708
Valves $ 192,470 25% % 48,118 3% 240,588
Instrumentation 3 868,351 45% $ 390,758 $ 1,259,109
Off Gas System $ 2,316,805 30% $ 695042 % 3,011,847
Steam Supply $ 211,375 0% $ 63413 % 274,788
Process Water $ 38,250 30% $ 11,475 % 49,725
Chiller/Condenser System $ 62,276 30% $ 18,683 $ 80,959
Construction Mgmt Labor $ 1,680,204 10% $ 168,020 $ 1,848,225
Subtotal $ 17,477,283 $ 6,365,736 $ 23,843,019

Operations (based on 2/17 yr life span)
Operations Labor $ 99,977,036 10% $ 8997704 § 109,974,740
Material 3 26,209,784 15% $ 3,931,468 3 30,141,251
Equipment $ 257,244 0% $ 77173 3% 334,417
Subtotal $ 126,444,064 $ 14,006,344 § 140,450,408

Decommissioning =
Characterization $ 142,060 35% $ 49721 $ 191,781
Decomissioning Plan $ 69,237 10% $ 6924 §$ 76,161
Field Operations $ 3,033,481 35% $ 1,061,718 % 4,085,199
Final Survey $ 116,716 35% § 40850 §$ 157,566
Final Report $ 67,929 10% $ 6,793 § 74,722
Subtotal $ 3,429,422 $ 1,166,006 $ 4,595,428
Total Project 3 163,139,629 $ 24,597,741 §$ 187,737,370
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