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Summary

The exact physical and chemical nature of 55 million gallons of toxic waste held in 177
underground waste tanks at the Hanford Site is not known with sufficient detail to support the safety,
retrieval, and immobilization missions presented to Hanford. The Hanford “Best Basis” team has made
point estimates of the inventories in each tank. The purpose of this study is to estimate probability
distributions for each of the analytes and tanks that the Hanford “Best Basis™ team has made point
estimates for. This will enable uncertainty intervals to be calculated for the “Best Basis” inventories and
should facilitate the safety, retrieval, and immobilization missions.

The methodology presented in this paper is based on scientific principles, sound technical
knowledge of the realities associated with the Hanford waste tanks, the Hanford “Best Basis” research,
chemical analysis of samples from the tanks, and historical data. The method builds on research
conducted by PNNL over the last few years. As a result of the processing histories, waste storage
practices and historical records, some of the waste can be partitioned into more homogeneous subsets that
can be identified to tanks and locations within tanks. Therefore, by using this we can maximize the
information extracted from the relatively few samples we have for each tank, combining sample data
information from similar tanks to generate a sample based estimate of the chemical and radionuclide
concentrations of each of the many waste subsets. Then by multiplying the concentrations for a specific
constituent (micrograms of the constituent per gram of waste, or microCuries of the constituent per gram
of waste) by the density (grams per liter) by the volume in a tank (liters), we can get an estimate of the
mass of a particular constituent (or radionuclide contribution) in each tank. This methodology does that
but does it in a probabilistic framework; thus using and getting probability distributions instead of single
numbers.

The approach partitions the waste into the following three groups:

e Sludges are residual solids that settled out of the waste slurries, often remaining in the same
tank to which they were first transferred. Drainable interstitial liquids are considered to be a
part of sludges. Four saltcakes are also included in this group: B, BY, T1, and R saltcakes due
to the treatment used by the LANL HDW model. (Separation of these saltcakes from the
sludges can be accomplished after the methodology has provided concentration and inventory
probability distributions. '

e Supernatants are liquid layers in the tanks.

e Saltcakes are solids formed as precipitates from supernatant, often as a result of coolmg after
the waste completes the evaporator process.

A probabilify distribution is generated for each of these waste phases based on “multiplying” the
probability distributions for: waste concentrations, density, and volume of waste. The distribution of total
inventory of constituent A in tank T is estimated by: :

J1.AT = fisuige, A,T D fisatwote, A,T D flsspemate, 4, T (S.1)
where
fisuaesr= sludge inventory probability distribution of constituent A in Tank T
Jisiae 4 7= saltcake inventory probability distribution of constituent A in Tank T

Sispemae s 7= Supernatant inventory probability distribution of constituent A in Tank T
@ = a summation of two probability distributions.
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* Each term on the right-hand-side of equation S.1 is estimated as the probability distributions of
the product of three probability distributions: concentration, density and volume.

Concentrations. The probability distributions of concentrations for analytes that are measured
frequently, such as Al, Bi, and Cr, are estimated in two ways depending on the waste group. For sludge
wastes, we estimate the concentrations of waste types that are derived from sample data clustering and
relate closely to the waste types used by the “Best Basis” and the Los Alamos National Laboratory
(LANL) Hanford defense waste (HDW) mode] teams. All chemical assay data from all the aliquots that
can be associated with each waste type form an empirical probability distribution for that waste type. The
estimated concentration distributions by waste type can be applied to both sampled and unsampled tanks.
For saltcake and supernatant wastes, we cluster data from the HDW supernatant mixing model (SMM)
concentrations to group tanks together and then use an analysis of variance (ANOVA) to combine data
appropriately and form probability distributions for concentrations of each analyte for the saltcake and
supernatant wastes in each tank.

For those analytes with little or no measured data, we estimate the probability distributions of the
concentrations to be centered at the “Best Basis” estimates and that reflect the variability indicated by
“analog” analytes that have adequate data to form a probability distribution.

Density. Probability distributions for the density of the waste (g/L) are estimated in the same

manner as the chemical analytes. This is possible since density is often measured as part of the chemical
assay process.

Volume. The probability distributions of volume for each tank are needed for sludge volume by

waste type, total supernatant volume, and total saltcake volume. The saltcake volume distribution is
derived using total waste volume.

The approach to estimate the probability distributions of total waste volumes partitions the waste
in each tank into volume elements (voxels), estimates the volume probability distributions for these
voxels and then “sums” the probability distributions. The variability associated with top location, bottom
location, and cross-area of each voxel is considered in the estimation. The total waste-volume estimates
will exclude retained gas volumes in the tanks. PNNL and the Hanford community have conducted
various studies estimating the volume of gas trapped in the waste.

LANL personnel (Steve Agnew’s team) are preparing estimates of the probability distribution of
volume for each waste type in each tank. These will be used to estimate the probability distribution of the
inventory and concentrations associated with the tank layer model (TLM) solids waste. Estimates of the
amount of supernatant in the tank can be based on the information in the “Best Basis” documents,
TCR/TCD, Hanlon reports, and current collected data. We envision an approach similar to the approach -
proposed for the total-volume estimation, but which allows for measuring parameters that separate the
sludge and supernatant. Our current approach for estimating the probability distributions for saltcake
volumes is by “subtraction” of the probability distributions of total waste, sludge, and supernatant.

We are continuing to develop and implement the methodology. Nuances discovered in the -
available data may require adjustments to the methodology. Simpler or more effective algorithms may be
developed that warrant modifying the methodology. And of course a major purpose of this report is to
provide a structure for discussing the methodology for additional refinements. As such, the methodology

implemented and used to generate the final uncertainty numbers will incorporate refinements and
improvements.
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1.0 Introduction

1.1 Objective

The purpose of this effort by Pacific Northwest National Laboratory' is to estimate uncertainties
associated with estimates of concentrations, waste volumes and densities, and total inventories of 71
analytes in the 177 nuclear waste tanks at Hanford. The estimated uncertainties are associated with the
Best Basis estimates of the inventories. These estimates were determined by the Hanford Engineering
Analysis Best Basis (HEABB) (Kupfer, et. al., 1997) task group from the available sampling data process
flow sheet data, waste-type characterizations, historical records of tank transfers (Agnew 1997), and other
available information. HEABB estimates are contained in the Tank Characterization Reports (TCRs),
published by Westinghouse Hanford Company and Lockheed Martin Hanford Company (LMHC).

During fiscal year (FY) 1997, the generation and publication of the HEABB estimates of tank
contents was completed. End-users of the “Best Basis” data have expressed the need for uncertainty
estimates to provided bounds on safety analyses, risk assessments, performance assessments, equipment
designs, and other projects requiring consideration of tank contents and consequences on facility
operations, human health and the environment. ~

Also during FY 1997, PNNL investigated 4 different approaches to estimating tank contents and
their uncertainties for sampled and unsampled analytes. Two of the approaches are of specific interest to
this effort. One approach, denoted the “Grouping/ANOVA” approach uses multivariate
statistical/mathematical techniques to group the tanks based on estimated chemical concentrations based
on the LANL HDW model (Agnew 1997), and then uses sample data where available in an analysis of
variance model to estimate tank concentrations and uncertainties. This method was used to estimate the
concentrations of the tanks and resulted in prediction intervals for the four T-200 tanks. Sample results
from 4 cores (1 from each of the 4 tanks) showed strong agreement to the prediction intervals and thus
supported the approach. A second approach investigated in FY 1997, used segment and subsegment
sample data to provide a sample based estimate of the Hanford defined wastes used in the LANL HDW
model, with the intent to upgrade the inventory and concentration estimates provided by the model. This
investigation showed considerable promise. These two FY 1997 investigations inspired the approach
pursued this year.

~ The uncertainties associated with the HEABB estimates can be established for all 177 tanks. The
measure of uncertainty depends directly on the amount and quality of information available for a given
tank. Of the 177 tanks at the Hanford site, 108 of them have sample data being used in this report. This
sampling information, however, varies for a given tank from very limited (e.g., safety screening data,
which have few measured analytes) to reasonably comprehensive (many measured analytes). These
sampling data are contained in the Tank Waste Information System/Tank Characterization Database
(TWINS/TCD) and are accessible online at http:/pctwins.pnl.gov/ter.nsf.

1.2 Overview of the Document
This document reports the methodology developed to assess the uncertaintieé associated with tank-

inventory estimates. The methodology described in this document is still under investigation and subject
to change. Further development of the methodology will be reported in the year end report for this task.

! Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under
Contract DE-AC06-76RLO 1830.
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Our goal is to complete a matrix of 71 analytes and 177 tanks with estimates for mean, standard
deviation, and percentiles for concentrations and inventories on a tank-by-tank basis, based on sample
data. To outline the precision level of the uncertainties associated with estimates of concentrations, waste
volumes and densities, and total inventories of 71 analytes in the 177 Hanford tanks, we defined a
quadrant approach. These quadrants divide the task into four sections (see Table 1.1):

1. Q11 = analytes that are frequently measured and present in tanks with significant sample data
2. Q21 = analytes that are frequently measured and present in tanks with minimal sample data
3. QI2 = analytes that are rarely measured and present in tanks with significant sample data

4. Q22 = analytes that are rarely measured and present in tanks with minimal sample data.

Table 1.1. Quadrants by Analyte and Tank

Frequently Measured Analytes Rarely Measured Analytes
Tank | Al A2 A7l
Tanks with Ti !
significant T2 !
sample data Q11 X Q12
T e
Tanks with I
minimal or zero [
sample data .. Q21 | Q22
T177 v

The entries in the left quadrants, Q11 and Q21, use analysis results of waste samples as the
primary source of information. To estimate concentration and density distributions for the tanks in both
quadrants, some mechanism is required to extend the samples results from the tanks in Q11 to the tanks in
Q21. A waste-type approach is applied to sludge wastes while a grouping-ANOVA approach is applied to
supernatant and saltcake wastes to achieve such an extension.

The right half of the matrix, quadrants Q12 and Q22, are ﬁiled by identifying relationships
between the measured and unmeasured constituents.

Section 2 of this document describes the overall approach used to estimate tank inventory
uncertainties. Three major components are considered in this approach: chemical concentration, density,
and waste volume. Section 2 also describes the two different methods used to evaluate the tank wastes in
terms of sludges and in terms of supernatant or saltcakes. Sections 3 and 4 describe in detail the
methodology to assess the probability distributions for each of the three components, as well as the data
sources for implementation. The conclusions are given in Section 5.
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2.0 Overview of Approach
2.1 Overall Concept

The inventory of constituent A in tank T (Inv, r)can be determined by the following equation

Inva,r = Ca,rxDrxVr 2.1)
where

Ca1= mean mass based concentration of constituent A in tank T (ug/g)
Dt = mean density of the wastes in tank T (g/L)
V= total volume of wastes in tank T (L).

All three quantities for the 177 tanks at the Hanford site can only be estimated through very
limited means. Equation 2.1 indicates the three major sources of variability that contribute to the '
uncertainty of the inventory estimate. Therefore, we need to assess the uncertainty (in terms of probability
distributions) associated with the estimate of each component to obtain the uncertainty (in terms of
probability distributions) of the tank-inventory estimate.

The tanks contain several waste phases, including sludge, supernatant, saltcake, etc. Wastes in
different phases need to be handled separately since the concentrations and densities vary widely from
phase to phase. Section 2.2 discusses issues on waste-phase separation. Sections 2.3 and 2.4 outline
methodologies to assess the variability of the estimates for the three components in each waste phase.
Section 2.5 describes the technique to obtain the uncertainty of total inventory estimate in a tank by
combining all component uncertainty following the relationship in Equation 2.1.

2.2 Waste Phase Separation
Three waste phases are considered in this study and defined as following.

1. Sludges are residual solids that settled out of the waste slurries, often remaining in the same tank to
which they were first transferred. Drainable interstitial liquids are considered to be a part of sludges.

This waste phase corresponds to the sludge wastes tracked in the Tank Layer Model (TLM), which is
part of the Hanford Defense Waste (HDW) model (Agnew 1977). To be consistent with the TLM
model, four types of saltcakes are also included in the sludge phase: B, BY, T1, and R saltcakes. This
consistency is desired, but not critical, for developing sludge-volume distributions by waste type
based on the estimates provided in the TLM.

2. Saltcakes are solids formed as precipitates from supernatant, often as a result of cooling after the
waste completes the evaporator process.

3. Supernatants are liquids that stand on top of sludge or saltcake layers in the tanks.
Both saltcake and supernatant wastes are tracked in the Supernatant Mixing Model (SMM), which is
another component of the HDW model. In the SMM, however, the two phases are not distinguished.

This phase distinction is necessary in this study to match waste sample state, which is typically
labeled as solid or liquid in the Tank Characterization Database (TCD).
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With the three waste-phase separation approach, the distribution of total inventory of constituent
A in tank T is estimated by:

S AT = fisudge, AT D fisctioie, 4,7 D fisupernae, 4,7 (2.2)

where f denotes a probability density distribution, and the symbol @ indicates a summation of two
probability distributions. Each component inventory distribution is estimated following Equation 2.1. The
probability distributions of concentration, density, and volume within each waste phase need to be
assessed to achieve this goal. -

2.3 Approach for Sludges

A waste-type approach is used for estimating sludge waste inventories. The approach assumes that
sludges from different plant processes accumulated in the tanks in distinguishable layers. The waste types
here are referring to the Hanford Defined Waste types defined in the HDW model. Specifically, the
sludge inventory distribution of constituent A in tank T is estimated by:

Sisudge, 4,7 = me,m®fb,.w,m ® S, s, T, Wi ' .3)
1
where

Jisuea, v = sludge inventory distribution of constituent A in Tank T
Jasuae wi = sludge concentration distribution of constituent A in waste type W;
Jisuse i = sludge density distribution of waste type i
Jvisuse,rwi = sludge volume distribution of waste type i in tank T
& = product operation of two probability distributions.

This approach provides a mechanism to extend sample results to unsampled tanks because waste type
composition can be estimated in tanks without sample data from tank-waste transaction records. This
approach also produces chemical composition profiles for the HDW waste types.

The variability associated with constituent concentrations by waste type is estimated based on
sample data. The waste samples were grouped through a cluster analysis based on set of key constituent
concentrations. Using the TLM and other historical process information, the waste types that these sample
groups represent were identified. The concentration distributions for each waste type are then developed
from the corresponding groups of measurements using a non-parametric distribution estimation technique.
Section 3.1 contains a more detailed discussion on how samples were mapped or grouped into waste types
and how empirical distributions were developed for concentrations.

Some waste types have not been sampled. To' obtain concentration distributions for these waste
types, a site-wide variability is applied to each constituent. The site-wide variability is scaled based on the
historical estimate of the mean concentration provided in the HDW model.

Among the 71 target constituents, 44 (principally radionuclides) are rarely measured. An énalog
list (see Section 3.1.2) is developed to extrapolate distributions developed for the analog constituents to
the corresponding unmeasured constituents. -
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For all three situations, the detailed procedures for developing concentration distributions for
sludges are described in Section 3.1.

The variability’s associated with densities in each waste type are estimated similarly to that of
concentration variability. The density distributions for each waste type are developed based on the density
measurements within each cluster described above.

The Los Alamos National Laboratory (LANL) team will develop the variability associated with
sludge volumes by waste type in a tank, based on tank transaction history. More discussion on volume
distribution can be found in Section 4. '

2.4 Approach for Supernatant and Saltcakes

Because of the nature of the supernatant and saltcakes, it is impractical to further partition
supernatant or saltcake samples into waste type groups. For these two phases of wastes, inventories are
estimated using the following two equations:

Sisateotey 4,7 = fisuteote, T ® fDsatioate, T Q fsatote, T 249
and
ﬁSupandt, AT = ﬂw,T ® M,T ® ﬁ'&pa-a,T ‘ (2.5)

where f denotes a probability distribution and ® indicates a multiplication operation of two probability
distributions.

The concentration and density distributions are assessed at a tank level using an approach
combining tank grouping with the analysis of variance (ANOVA) technique. First, 177 tanks are grouped
based on the historical chemical composition estimates provided in the SMM model (Agnew et al. 1997).
Based on the processing history, the tanks in the same groups are likely to have similar chemical
compositions. This step is necessary so that concentrations for tanks that have not been sampled could be
estimated using the information of sampled tanks that are in sample groups. An ANOVA model is then
applied to supernatant and saltcake data, separately, using the same grouping results. The concentration
and density distributions for both supernatant and saltcake wastes are the products of the analysis under a
normal distribution assumption.

For the constituents without direct measurements, a similar mapping procedure is applied as
described in Section 2.3. Detailed methods to develop concentration and density distributions for
supernatant and saltcake are provided in Section 3.2.

The HEABB estimates for supernatant volumes in each tank are considered to be the point
estimates of the supernatant volumes. Potential data sources for assessing the uncertainty associated with
the supernatant volumes include gamma and/or neutron log data, waste temperature measurements, and
tank photos.

Measurements for saltcake volumes are seldom available, and the HDW model does not provide
historical estimates for the volumes. The saltcake volumes, however, can be derived using the total tank
waste volumes, which have a fair amount of measurements available using various instrumentation.
Specifically, the saltcake volume in a tank can be determined by subtracting the volume of sludges and
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supernatant from the total waste volume in the tank. The methodology used to develop the distributions
for these volumes is discussed in Section 4.

2.5 Monte Carlo Technique for Total Inventory

As discussed previously, the total inventory for a given constituent in a tank is determined by
inventories of the three waste phases. The supernatant and saltcake inventories are each in turn
determined by three components: concentration, density, and volume. The sludge inventory even contains
several sets of such triplets for different waste types. It will be very difficult to derive the total inventory
distribution analytically from the combination of such a large number of component distributions. An
efficient alternative is using a Monte Carlo simulation technique.

A large number, say 1000, of realizations are generated from each component distribution (e.g. Al
concentration distribution for a sludge of 224 wastes, supernatant volume distribution for Tank AY-101,
etc.) to form 1000 realization sets. Because of the huge number of component distributions, a sampling
strategy, called Latin Hypercube sampling, is used to ensure a reasonable coverage for this high-
dimensional component space. Instead of generating realizations randomly, each component distribution
is divided into 1000 equal area bins. A value is taken from the center of each of the 1000 bins as the
realization of the distribution. The 1000 realizations from each component distribution are then randomly -
ordered, and realizations from all distributions are combined to form the 1000 realization sets. This last
step is to arrange different bin combinations of the component distributions.

The calculation is conducted using Equations 2.3-2.5 for each realization set yielding the same
number of realizations of the constituent inventory in the tank for the sludges, saltcakes, and supernatants,
respectively. These results can be useful for waste retrieval operations. The realizations of the total
inventory for the constituent are obtained using Equation 2.2. Empirical distributions for the total
inventories can be estimated based on the 1000 realizations in terms of desired quantiles.
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3.0 Methodology to Estimate the Concentration and Density
Distributions

3.1 Chemical Composition Distributions by Waste Type for Sludge Waste

For sludge wastes, the entries in the upper left quadrant of Table 1.1, Q11, use analysis results of
waste samples as the primary source of information to refine estimates of waste-type concentrations and
quantify the uncertainties associated with the estimates of waste-type concentrations. These distributions
of waste-type concentrations will be combined with information of the distributions of waste-type
volumes in each tank for the analytes in the left half of the matrix (quadrants Q11 and Q21) and density
distributions to estimate the distributions of volume and concentration for all 177 tanks for those analytes.
The right half of the matrix, quadrants Q12 and Q22, will be filled by identifying relatxonshlps between
the measured and unmeasured constituents.

The methodology is applied similarly for tanks in quadrants Q11 and Q21 (see Section 3.1.1).
The constituent-concentration sample results from quadrant Q11 are mapped into sludge and saltcake
waste types by means of a cluster-analysis exercise. Waste-type distributions are then fit using the
mapped data. These waste-type distributions in conjunction with the density and volume distributions are
used in the same manner to estimate the inventories for tanks in quadrants Q11 and Q21. Note the
difference between the “waste-type” approach, which is used in the present methodology, versus the
“tank” approach. For example, a tank in Q11 (sampled tank) will use its own sampling data along with
data from other similar tanks for the estimate of its inventory. ”

Quadrants Q12 and Q22, the right half of the matrix, will be filled by identifying relationships
between the measured and unmeasured constituents. This methodology is discussed in Section 3.1.2.

This is the approach outlined in the Staterﬁent of Work (SOW) and being refined by additional
research and analysis in close coordination with Mr. Brett Simpson, the LMHC Technical Contact.

3.1.1 Measured Constituents

A large volume of tank sampling results was retrieved from the TCD in November 1997 via the
TCD Website. A discussion of the data processing steps and data summaries is given in LoPresti et al.
(1997). The data were retrieved from the database independently for each constituent. The constituents
that had good coverage (i.e., analytical results for a majority of the tank samples) over the samples that
have been taken from the Hanford tanks were classified as measured. These constituents are found in
quadrants Q11 and Q21 of the matrix described in the last section.

The data were checked for quality. Only data approved under the Tri-Party Agreement (TPA)
were retained in the extracted data. These are tank sample analyses conducted after 1989. The
Washington State Department of Ecology has recognized these data as being adequate to generate TPA
documents. Sample records for preferred analytical methods were the only records retained in the
database. Sample records that were potential suspects were checked for potential exclusion from the data
set. Other checks and conversions were also made, such as result-unit conversion and addressing less-than
detection records. Analyses of matrix spikes, blanks, and laboratory standards were not included in the
quality assurance (QA) checks that were made. A more complete description of the QA issues addressed
is found in LoPresti et al. (1997).

3.1




Once the data sets were organized for each constituent, a multivariate data set was organized that
included all constituents deemed important for discriminating between waste types for data clustering
purposes. These constituents are found in the list below. The technical staff at LMHC approved this list of
constituents. To create this data set, it was necessary to match records from each of the analyte
(univariate) data sets. To accomplish this, a unique identifier (location identification [LOCID]) was
constructed for each tank-sampling location. A tank-sampling location could be an individual grab
sample, quarter segment, half segment, whole segment, core composite, tank composite, or auger sample.
The sample phase (liquid or solid) was also used in the LOCID.

Table 3.1. Constituents Used in Cluster Analysis

1. Aluminum 7. Fluoride 13. Nitrite

2. Bismuth : 8. Water 14. Phosphorus
3. Calcium 9. Lanthanum 15. Lead

4. Chromium 10. Manganese 16. Uranium
5. Cesium-137 11. Sodium 17. Zirconium
6. Iron -12. Nickel

Al of the records for a given constituent and LOCID were simply averaged together. Typically,
the records that were averaged were single primary and duplicate analysis results. The records for all of
the constituents were matched using the LOCID to create rows of matrix of multivariate data. The
columns of the matrix are the 18 constituents, and the rows are the LOCIDs. There were 1137 unique
LOCID:s for the solids data and 376 LOCIDs for the liquid data used in the clustering analysis, which is
discussed in a later section.

Both solids (sludges and saltcakes) and liquid samples were included in data-extraction efforts.
The data for liquid and solid waste phases were separated for sample grouping work because of their
different properties.

A technique called Hierarchical Cluster Analysis (HCA) using complete linkage (see Everitt
1993) was used as the primary method to group samples into classes with similar waste properties. This
method was supplemented by other techniques, some of which will be mentioned later in this section.

The present cluster analysis, which focuses on mapping samples (LOCIDs) into waste types,
involves 1137 solid sample LOCIDs. The tree-cutting rule has also been modified to better model the
characteristics of the waste-type distributions that we expect exist.

The modification to the cutting rule will now be described. First, each LOCID is tagged with
potential waste types that the sample could have come from based on the TLM (Agnew 1997). These
potential waste types are the primary, secondary, and tertiary TLM waste types for the tank that the
sample came from. The samples are then clustered using HCA methods. The resulting tree or dendogram
is then cut starting at 2 clusters and working down the tree to some specified stopping point (350 cuts for
this application). At each cut, the resulting clusters are examined to see if there is a 75% majority for a
single TLM waste type. If there is, the cluster is given the name of the waste type found in majority, and
the cluster is removed from the data set. This continues from cut to cut down the tree until the specified
stopping point is reached.

Table 3.2 shows a cluster with a 75% majority for one of the waste types. It was found at the 27
cut through the tree. It is comprised of 20 LOCIDs of which 16 have CWZr waste as one of their waste

types (80% majority). Because this cluster met the majority criteria, the cluster was named “CWZr” and
set aside, and the analysis continued. It is very interesting that the samples that make up the 20% minority
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have CWP and CWR (other cladding wastes) as potential waste types. This finding lends some evidence
that the different cladding wastes (CWP, CWR, and CWZr) have similar properties.

Table 3.3 contains a summary of the results of the clustering exercise. Eight super-groups of data
were identified in the analysis. The table shows the number of samples that were mapped into each super-
group. It also shows HDW/TLM waste types that were mapped into each super-group. For example,
super-group 2 has 6 HDW/TLM waste types that have been mapped into it. The 59 samples that are in
this super-group will be used to estimate distributions for these 6 waste types. Note that the distributions
will be the same for these 6 waste types. Out of the 53 HDW waste types, waste-type concentration '
distributions can be obtained for 25 of them. These 25 waste types represent approximately 90% of the
total waste volume.

Using the majority cutting criteria, 313 out of the 1137 solid samples did not cluster. We suspect
samples that fall on waste-type boundaries (i.e., they are a mix of two or more waste types) are included
in this number. The distributions for these waste types will be determined using site-wide sampling
information or possibly these 313 miscellaneous samples.

Two key assumptions are used in this analysis. First, we assumed that the waste-composition
differences between waste campaigns are marginal. Second, we assumed that the following waste types
from the Bismuth Phosphate process also have negligible differences: 1C1, 1C2, 2C1, 2C2, UR, BSItCk.
The data showed evidence supporting these assumptions.

Table 3.2. Majority Cutting Rule Example

Group LOCID Cut Potential TLM Waste Types

Name ' Number |Primary  Secondary Tertiary
CWZr SC19407LAW-103 |27 CWZr
CWZr SC19309LAW-103 {27 CWZr
CWZr SC19409UAW-103 {27 CWZr
CWZr SC19408LAW-103 |27 CWZr
CWZr SC19408UAW-103 |27 CWZr
CWZr SC19308LAW-103 |27 CWZr
CWZr SC19308UAW-103 |27 CWZr
CWZr SC19309UAW-103 |27 CWZr :
CWZr SC19508LAW-105 (27 CWZr SMMA |PL
CWZr . |[SC19507LAW-105 |27 CWZr ° |SMMA  |PL
CWZr . SC19307UAW-103 {27 CWZr
CWZr SC19509UAW-105 |27 CWZr SMMA |PL
CWZr SC19508UAW-105 |27 CWZr SMMA |PL
CWZr SC19608UAW-105 |27 CWZr SMMA |PL

CWZr SC11003LS-107 27 CWR R SMMS
CWZr SC11103LS-107 = 127 CWR R SMMS
|CWZr SC16201LC-104 27 CwWP oww CWZr
CWir SC10503LS-107 27 CWR R SMMS
CWZr SC11003US-107 27 CWR R SMMS

CWZr SC19608LAW-105 |27 CWZr SMMA |PL
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Table 3.3. Mapping of Waste Types into Super Groups

Super- # Samples mapped Waste Types Mapped into Super-Groups
Group into Super-Group )
1 120 - 224
2 59 1C1, 1C2, 2C1, 2C2, UR, BSkCk
3 74 BYSICk
4 51 R1,R2, CWRI], CWR2, CWP1, CWP2
5 53 CWZrl, CWZr2 ‘
6 37 _| PFeCN1, PfeCN2, TFeCN, 1CfeCN
7 217 SMMA1, SMMA2, SMMT2
8 213 SMMS1, SMMS2 '
Misc* 313 MW1,MW2, P1, P2, PL1, OWW1, OWW2, OWWS3, Z,
HS, THI1, TH2, AR, B, BL, SRR, CSR, DE, CEM, NIT,
Salt.Slurry, DW, N, T1SItCk, RSitCk, P3, PL2, PASF

*Misc is the set of LOCIDs that were not mapped into the 8 super-groups.

Distribution Estimation: For each constituent and each super waste type, when there are enough
sample concentration data, we estimate the concentration distribution based on data. When sufficient data

do not exist, we use methods described in the Unmeasured Constituents section (Section 3.1.2) to produce
an uncertainty distribution.

When both below detection-limit data and detected-concentration data exist for a constituent for a
given super waste type, we convert all the below detection-limit data to half of the detection limits. When
all the data for a constituent for a given super waste type are below detection limits, we use a uniform
distribution between 0 and the largest detection limit as its distribution. '

Because Hanford records do not provide sufficient information on the forms of the concentration
distributions for constituents in different waste types to construct the distribution parametrically, we
estimate the probability density functions (pdf) non-parametrically. We use the kernel smoothing method
with a triangle kernel to estimate the probability density function. The bandwidth of the kernel is
determined by visual inspection via several trial-and-error experiments to balance between the
smoothness of the pdf and the fidelity of the estimated cumulative distribution function (cdf) to the
empirical cdf. It turns out that the bandwidth that gives the appropriate amount of smoothing for most of
the major constituents for the 8 super waste types and site-wise data is 1/5 of the distance between the
second and 98th percentiles of the data. The estimated pdf is truncated at 0 and 1,000,000 and then
normalized so that the area under it is always 1. It turns out that for most cases, the area under the
extended curve on the lower end, i.e. the probability based on the extrapolated density curve on the lower

end, lies around 2% while the probability based on the extrapolated density curve on the upper end lies
around 1.5%.

_ Given the estimated pdf for any constituent and any one of the 8 super waste groups, we can
generate 1000 samples with equal probabilities from the estimated distribution. Those 1,000 samples will
be used in the Monte Carlo simulations to estimate the uncertainties.

Figures 3.1 through 3.3 show some examples of the procedure. Figure 3.1 shows the histograms
of data for 4 selected constituents and super waste group 224. Also shown in Figure 3.] are estimated pdf
curves and Agnew’s concentration values (the vertical lines) for the selected 4 constituents and the waste
group. Figure 3.2 shows the estimated cdf’s (based on estimated pdf’s) and the empirical cdf’s for the
selected 4 constituents and the waste group. Figure 3.3 shows the histograms based on 1,000 equal
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probability Monte Carlo samples for the 4 constituents and the waste group together with Agnew’s values
(the vertical lines).
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Figure 3.1. Histograms and Estimated pdf Curves Based on Sample Data for Four Selected Constituents
and Super Group 224. Vertical lines show Agnew’s concentration values.
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3.1.2 Unmeasured Constituents

A large number of analytes (principally radionuclides) estimated by the best basis are not
typically included in the analysis of tank farm samples, and for many analytes, no direct measurements
are available. For these analytes, a relationship must be identified between a measured analyte and an
unmeasured analyte that correlates to the uncertainty associated with the estimate. The relationships that
are believed to be indicative of the variability of an analyte are as follows:

Elemental: Uncertainties developéd that are based on measuring the total quantity of an element are
assumed to apply to all isotopes of the element (e.g., Ni> is assumed to have the same uncertainty as Ni).

Compound: Analytes found primarily in 2 compound that is typically measured are assumed to have the
same uncertainty as that compound (e.g., C"* will have an uncertainty similar to CO; since almost all C!*
will be found in CO;). ’

Daughter Products: Short-lived daughter products are assumed to have the same variability of the parent
radionuclide (e.g., Y* is assumed to have the same uncertainty as Sr°).

Periodic Table: Analytes that occur in similar locations on the periodic table typically possess similar
chemical and physical behavior. They are assumed to be similarly distributed within a tank and therefore
will have similar uncertainties (e.g., the uncertainty associated with the Tc* inventory will be based on
the uncertainty of Mn).

Activity: Many transuranic analytes can be determined from the total alpha measurement. The uncertainty
of these analytes will be based on the uncertainty associated with total alpha (e.g., the inventory of Np*’
can be estimated from total alpha; therefore the uncertainty distribution should be similar to that of total
alpha).

Table 3.4 lists the analytes for which little or no sample measurements are available and the
measured analyte (analog) being used to extrapolate the uncertainty. This table also lists the relationship
used to establish the mapping. '

Table 3.4. Unmeasured Analytes and the Corresponding Measured Analog

Unmeasured Analyte Measured Analog Relationship
"H Water Compound
“C CO; (carbonate) Compound
“PNi Ni : Element
DCo Ni Periodic Table
*Ni Ni Element
Se - SO, Periodic Table
Ry %St Daughter Product
“=Nb Zr Periodic Table
Zr Zr Element
~PTc Mn Periodic Table
"%Ru Fe Periodic Table
med Pb Periodic Table
) Bi Periodic Table
%Sn Pb Periodic Table
i Cl Periodic Table
Cs PCs 'Element
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Unmeasured Analyte Measured Analog Relationship
BmBa PCs Daughter Product
“'Sm La Periodic Table
“*Eu La Periodic Table
En La Periodic Table
Ey La Periodic Table
“Ra Sr Periodic Table
“Ac La Periodic Table
ZRa Sr Periodic Table
“*Th U Periodic Table
“'Pa U Periodic Table
““Th U Periodic Table
=2y U Element
27y U Element
“U U Element
=y U Element
i) U Element
“'Np total alpha Activity
By total alpha Activity
Zpy total alpha Activity
Zpy often measured/total alpha Activity
““Pu total alpha Activity
ATAm often measured/total alpha Activity
“Ipy total alpha Activity
Z1Cm total alpha Activity
““py - total alpha Activity
7 Am total alpha Activity
ZCm total alpha Activity
T Cm total alpha Activity

The distributions developed for the measured analytes are expected to be scaled to account for the
relative amount of the unmeasured analog and applied directly without an increase in uncertainty. It is
recognized, however, that applying distributions for measured analytes to unmeasured analytes will
introduce additional uncertainty. The additional uncertainty arises both from differences in the
distributions between the measured analyte and its unmeasured analog, particularly those based on the
periodic table, and from applying distributions developed for sample-based means to model-predicted
values. Comparing the sample-based means to the model predictions for the measured analytes should
provide an estimate of the uncertainty introduced by centering sample-based distributions around the
model predictions for the unmeasured analytes. Also, analog relationships could be developed for two
measured analytes using the same methodology used for the unmeasured analytes. The distributions that
would result from these relationships could then be compared to the actual distributions based on the
sample data to provide an estimate of the additional uncertainty.

3.1.3 Unsampled Waste Type
This subsection will discuss a site-wide variability approach that will be applied to unsampled

waste types. A waste type is classified as an unsampled waste type under one of the following two
conditions: 1) the waste type has not yet been sampled; or 2) although the waste type may have been
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sainpled, the samples were so contaminated by other waste types that no group of representative samples
can be identified through the cluster analysis. For these waste types, a site-wide variability approach will
be applied, which is discussed in this subsection.

This site-wide variability approach has two major steps. The first step is to develop an empirical
sité-wide distribution for the target constituent using all available measurements of this constituent. The
method used to develop the empirical distribution is the same procedure used to develop the concentration
distributions for each identified waste type (see Section 3.1.1 for details). The purpose of this step is to
capture the range and shape of the site-wide distribution for the constituent. The second step is to re-scale
the site-wide distribution for the waste type of interest by multiplying the estimated cdf with a constant so
that the median of the re-scaled distribution is located at the mean concentration value of the waste type
estimated from historical information, specifically, the mean concentration from the HEABB estimates or
HDW model. If the upper tail of the re-scaled distribution is above 1,000,000 ppm, our tentative plan is to
use two different constants to re-scale the cdf. For values below the median, we use one constant
multiplier so that the new median is at the desired location; for values above the original median, we use
another constant multiplier so that the new maximum value is at 1,000,000. '

Because of the lack of information, the distributions developed using this approach may not
represent the true variability of the concentrations in unsampled waste types. However, this approach can

provide a conservative variability estimation provided the samples that have already been taken captured
the site-wide extreme values. o

Figures 3.4 through 3.7 give some examples of the procedure. Figure 3.4 shows the histograms of
the concentrations for 4 selected constituents based on site-wide unclustered sample data. Also shown in
Figure 3.5 are the estimated pdf curves. Figure 3.5 shows the estimated cdf’s based on the estimated pdf’s
and the empirical cdf’s for the selected 4 constituents based on site-wide unclustered sample data. Figure
3.6 shows the histograms based on 1000 samples with equal probabilities from the estimated site-wide
distributions for the 4 constituents. Figure 3.7 shows the re-scaled (from the site-wide distribution)
distributions based on 1000 simulated samples for waste-type T1.SaltCake.
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3.2 Concentration Distributions for Saltcake and Supernatant

As discussed in Section 2.2, a Grouping-ANOVA approach is used for saltcake and supernatant
wastes. This approach estimates the mean concentration and density of each constituent in the left
quadrants of Table 1.1 for saltcake and supernatant wastes in each tank. The procedure also provides the
uncertainties associated with these mean estimates/predictions. To obtain distributions for the
concentrations and densities, a normality assumption or other distribution assumption is necessary to
specify the shape of the distributions.

Section 3.2.1 discusses the purpose and procedure for grouping tanks for their saltcake and
supernatant wastes. Section 3.2.2 describes the saltcake data and supernatant data used later in the
ANOVA procedure to do estimation/prediction. Section 3.2.3 discusses a random-effect model and
assumptions made to analyze variance, as well as the outcomes from this analysis.

3.2.1 Tank Grouping for Saltcake and Supernatant

Unlike sludge wastes, saltcakes and supernatants cannot be further partitioned into waste types due
to the mixing nature of the transactions and evaporations. Therefore, the mechanism used to extend
sample results from the tanks in the quadrant Q11 to the tanks in Q21 (see Table 1.1) has to be at a tank
level, instead of a waste type level.

A tank grouping technique can provide an extending mechanism at a tank level for supernatant and
saltcake wastes. It is believed if tanks have similar transaction history, the chemical compositions of these
tank are likely to be similar. A similar assumption can be made for only supernatant or saltcake wastes in
the tanks. If the tanks can be grouped in such way so that the tanks in same group tend to have similar
compositions in the supernatant or/and saltcake wastes, we may estimate these concentrations for the
unsampled tanks using the sample data from the tanks within the same group.

The historical concentration estimates for the wastes tracked by SMM model in each tank are
selected as classifiers for this tank grouping effort. This is because SMM model tracks both supernatant
and supernatant concentrate (saltcake) wastes and, therefor, those historical estimates reflect the tank
transaction history for the supernatant and saltcake portion of the wastes.

The same 17 constituents as listed in Table 3.1 are currently used as the discriminators. Alternative
constituents more efficient for those two waste phases are still under investigation. A hierarchical cluster
analysis technique is applied to these historical concentration estimates to achieve tank grouping. The
resulting tank grouping can then be used in an ANOVA model to obtain concentration estimates and
uncertainties for both supernatant and saltcake wastes in all 177 tanks.

3.2.2 Data of Saltcake and Supernatant

The data used to estimate the mean concentrations and densities for saltcake and supernatant
should represent these portions of wastes in a tank.

For a supernatant, the data used are all sample measurements with samples labeled as liquid. This
includes all supernatant and drainable liquid samples. The underlying assumption is that all liquid wastes
are classified as SMM wastes. The assumption may be further modified so that supernatants contain only
supernatant wastes since the drainable liquids contained in sludge layers may be consndered as a part of
the sludge.
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For saltcakes, the samples are identified through the cluster analysis, which is described in
Section 3.1.1, that is made on solid samples. The samples classified into the super groups 7 and 8 are
considered to be saltcake samples since the two groups contain primarily the SMM waste types defined in
the HDW model. Some samples in the miscellaneous groups are also considered to be saltcake samples if
the sampled tanks contain primarily the saltcake wastes.

3.2.3 ANOVA Procedure

A univariate ANOVA technique is applied separately to saltcake and supernatant samples
described in the previous section. The term “univariate” means that the analysis is conducted one
constituent at a time without imposing any correlation structure among the constituents. The ANOVA
model used to obtain predictions for mean concentrations or densities along with the associated
uncertainties is '

ik = p+Gi+ Ty + Ege. G.1)
_ where

Yix = the concentration of a specific constituent or density of the k™ sample in tank j in group I
p = the overall mean concentration of the constituent across all tanks :
G; = the random effect of group I and is assumed independently and identically distributed as a
N(0,0¢°) distribution for all groups
Tjj= the random effect of tank j in group I and is assumed independently and identically distributed as
a N(0,67°) distribution for all tanks A
Ea = the within-tank random error term and is assumed independently and identically distributed as a
N(0,0%”) distribution for all tanks.

A similar approach was used to predict T-200 series tank concentrations that had not yet been
sampled (see Engel 1997 for details). A one-core sampling taken later from each T-200 series tank
showed that more than 90% of the 68 estimated means (17 major constituents in four tanks) based on the
sample measurements fell in the 95% confidence interval of the tank means produced through the model
analysis.

In this ANOVA model, a normality assumption is made for the concentration distributions. This
assumption is necessary because the analysis procedure is not available for such models if the underlying
distribution assumption is different from normality. If, however, the sample data show that some
concentration distributions severely deviate from the assumption, some data transformation techniques
will be applied to the data to satisfy the assumption.

A Restricted Maximum Likelihood (REML) method is used to estimate the variance components in
the model. The end products of this analysis are the mean concentration and associated uncertainty of
saltcake and supernatant for each constituent in each tank.

3.3 - Density and Specific Gravity by Waste Type
This section discusses tank waste sampie density and specific gravity data. These data are of

interest because sample density and specific gravity measurements allow calculations of mass inventories
from analyte concentrations for given volumes. The following tables are intended to summarize what we
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know about the density and specific gravity data available from TWINS/TCD as of the end of January
1998.

3.3.1 | Definitions and Record Counts

Table 3.5 shows an overall tabulation of density and specific gravity records retrieved from
TWINS/TCD from a special download performed in early February 1998 to capture density data available
only after our November 1997 download. This table shows that several types of density measurements are
carried in TWINS/TCD. They are defined as

o “Bulk density” applies to the entire sample from the core and includes interstitial liquids.
e “Density” applies to the solids portion of the sample after draining off liquids.
e  “Solids density” applies to the solids portion of the sample after draining off liquids.

In addmon, a few records are described as “density before centrifuge” and “dens1ty after
centrifuge.” These are not considered in this section.

In TCD, samples are identiﬁed as coming from solids-phase samples or liquid-phase samples.
Density measurements apply principally, but not always, to solid samples, and specific gravity
measurements apply even more consistently to liquid samples. Density measurements are always
reported in TCD in grams per milliliter (g/mL), and as such allow direct conversion of a concentration
expressed on a mass basis (e. g., pg/g) to a volume basis. Specific gravity data are always unitless, being
the ratio of the mass of a unit volume of the sample to the mass of the same volume of water at standard
temperature and pressure, and can be applied directly to analyte concentrations already on a volume basis -

(e. g., pg/mL).

“Density” and “Solids density” can be treated the same way in the computations. “Bulk density”
and “density” actually may not be measuring exactly the same physical entity, but for tank samples, they
are probably practically interchangeable. However, not accounting for interstitial liquid in a solid sample
may be a source of uncertainty in inventory estimates. Table 3.6 shows differences between aggregate
“bulk density” and aggregate “density” means in solid samples, but it is not clear as to what these
differences should be attributed to.

Table 3.5. Categorization of Density and Specific Gravity Records. Record counts include records with
result value set to NA.

Analyte Units Number Number Number | Number Number
Solid Liquid Primary | Duplicate Min-
Samples* | Samples* | Samples | Samples detection
Bulk density g/mL 549 17 544 22 517**
Density g/mL 222 78 252 48 0
Solids density g/mL 22 0 17 : 5 0
Specific gravity | Unitless 3 944 499 448 378

* Includes Primary and Duplicate sample records, but not minimum detection limit records
** Bulk density minimum detection limit values are uniformly set to 0.5 in the TCD records.

_ Table 3.5 also tabulates the data by “result type™—pairs of Primary and Duplicate measurements.
The table shows that only specific gravity measurements have, as a rule, both Primary and Duplicate
measurements, which could, in principle, be used to estimate sampling error. The density measurements,
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as arule, do not have replicate samples. Although these values account for only about 80% of the pairs of
- specific gravity measurements, they can provide a means to estimate sample error.

3.3.2 Minimum Detection Limits

Density measurements generally do not have meaningful minimum detection limit values in TCD.
Specific gravity data do have minimum detection limit values, which provide information on the expected
precision of specific gravity measurements. The modal minimum detection limit is 0.001, and the
maximal value is 0.10 specific gravity units. These data suggest that in most cases the uncertainty of

inventory estimates due to uncertainties in specific gravity measurements will be of the order of 0.05% to
0.1%, with a few cases of 5 to 10%.

3.3.3 Descriptive Statistics

Tables 3.6 and 3.7 show descriptive statistics for all density and specific gravity measurements
taken as a whole without regard to tank, spatial location, or existence of duplicate measurements. These

tables provide a general idea of the distribution of these data. The minimum value of 0.37 for density in
Table 3.6 remains unexplained. :

Table 3.6. Solid Samples: Overall Descriptive Statistics for Density and Specific Gravity Measurements

Analyte N | Min | 1¥Q | Median | 3°Q | Max | Mean | Stdv | Units
Bulk density 525 [ 091 ] 1.52 1.62 1.71 | 2.10 | 1.58 | 020 g/mL
Density 221 [037] 1.11 1.28 144 | 2.02 | 130 | 027 g/mL

Solids density 22 1150 | 1.67 1.71 1.73 | 2.12 | 1.73 0.14 | g/mL

Specific gravity 3 1195} 2.18 240 252 | 264 | 2.33 0.35 | Unitless

Table 3.7. Liquid Samples: Overall Descriptive Statistics for Density and Specific Gravity Measuremen

Analyte N _ | Min | 1¥Q | Median | 3*Q | Max | Mean | Stdv | Units :
Bulk density 17 1094 | 1.04 1.36 147 | 1.59 1.27 0.28 g/mL
Density 78 10.52 | 1.15 1.26 1.30 | 1.48 1.20 0.17 g/mL

Solids density 0 | NA | NA NA NA | NA | NA NA g/mL

Specific gravity | 938 | 096 | 1.074] 1.30 141 | 2.77 | 127 | 0.20 | Unitless

Figure 3.8 shows plots for example distributions of bulk density and density data for the 224
super waste type. Each distribution is smoothed by the- kernel smoother described above. This
demonstrates that the density and specific gravity data can be formed into empirical distributions, which
can be used for Monte Carlo simulations in order to better represent natural variability in these
observations. :
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3.3.1 Relating Density Measurements to Cdncentrations by Sample

Density and specific gravity data are most useful for estimating inventories when the
measurements can be directly associated with analyte concentrations in a specific sample or region of
each tank, as discussed in Section 2 on the overall approach. In order to determine the extent to which this
condition is obtained for the data set, LOCIDs were constructed for each density and specific gravity
measurement, as discussed in Section 3.1.1. The density and specific gravity LOCIDs were then matched
against the analyte sample LOCIDs and the match results tabulated as shown in Table 3.8.

Table 3.8 shows how density and specific gravity observations are distributed between solid and
liquid phase samples. When tabulated on the basis of sample location (LOCID), it is evident that the
liquid samples are more likely to have a corresponding specific gravity measurement than the solid
samples are likely to have a density measurement. Over 84% of liquid sample LOCIDs can be matched to
a specific gravity measurement. In contrast, less than 39% of the solid sample LOCIDs can be matched to

- a corresponding density measurement. .

Table 3.8. Number of Samples by LOCIDs for Which a Density or Specific Gravity Observation Exists

Number solids | Number solid Number Number liquid
samples samples matched | liquids samples matched
. to density samples to specific gravity

Number samples 1578 376
Bulk density 471 29.8% 7 1.8%
Density 146 _ 9.3% 10 2.7%
Solids density 22 1.4% 0 N/A
Specific gravity 2 0.1% - 318 84.6%
Taken together 613 38.8% 331 88.0%

Some density and specific gravity data exists for all the super waste types defined above except
the FeCN super waste type. Table 3.9 shows the extent of representation for each super waste type for
bulk density data. The samples in the SSMA super waste type appear to be much better represented by
bulk density data, with 73% of samples matched to density values, than the other super waste types.
Similar tables can be built for other classes of density data. Table 3.9 also shows that mean densities
vary considerably between super waste types. The 224 waste type appears to have the lowest mean
density at 1.24 g/mL. SSMA, SSMS, R, and MISC means lie between 1.63 and 1.75 g/mL.

Although obtaining sample-based matches may be somewhat problematic, taken as a whole ,the
coverage may not be as sparse as appears in Table 3.9 because samples are usually represented by one of
bulk density, density, specific gravity, ore some other type of measurement, so that the assignment of
specific density values to samples is probably more complete than outlined in Table 3.10. In addition,
even when a specific density match to a sample cannot be made, this may indicate that a sample density
may have been measured for an entire segment, but other analytes were measured at subsegment
resolution. This suggests that concentration data for several LOCIDs would be multiplied by the same
density measurement taken at a coarser resolution to calculate the inventory for that tank. Each
unmatched sample would have to be taken on a case-by-case basis.
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Table 3.9. Bulk density coverage by waste type

N umber Number Bulk | Percent of Mean Bulk Standard
Waste type | samples density waste type Density - | deviation
(LOCIb) observations Samples (g/mL) (g/mL)
represented
1C2C 59 3 5% 1.40 0.19
224 120 24 20% 1.24- 0.08
BYSItCk 74 23 31% 1.49 0.28
FeCN 37 0 0% - -
R 51 6 12% 1.76 0.22
RWZr 53 24 45% 1.45 0.16
SSMA 217 159 73% 1.65 0.09
SSMS 213 65 31% 1.71 0.11
MISC 260 83 32% 1.63 0.22
Totals 1084 387 36% - -

TWINS/TCD continues to actively receive new tank sample data, including density and specific
gravity data that were not originally included in TCD. It is expected that as the data backlog is added to
TWINS/TCD, the proportion of density-to-sample LOCID matches will increase.
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4.0 Methodology to Estimate Waste-Volume Distributions

As discussed in Section 2, volume distributions for the three waste phases and the total tank waste
need to be developed. The methods to estimate these volume distributions are described in the following
four subsections.

4.1 Uncerhi'nty Distribution of Total Waste Volume

Conceptually, we think of tank volumes as the volume of a cylinder, V== *h. However, the
measurements for these parameters are not certain, and the volume is not flat on the top or bottom.
Therefore, instead of using V =t ¥’ h to estimate the volume, we will 1) partition the tank into volume
~ elements, “voxels”, 2) estimate each probability distribution of the volume of each voxel, and 3) sum up

the probability distributions to get a total volume probability distribution.

The tank contents will be partitioned into voxels that are sectors of concentric tracks centered at
the tank center.

Each voxel will have a cross-sectional shape of a sector. The dlmensmns of the sector shall be
approximately 1 square foot, approximately 1 foot on each side. The i i tank’s volume is

V,= Yh®a,= 3 (H-1)®a, @.1)

all voxels all voxels

where

hlj the height of the voxel
“o = the vertical distance of the top surface of the j voxel from the reference frame

= the vertical distance of the bottom surface of the j° voxel from the reference frame
= the area of the horizontal cross-sectional area of the j® voxel.

4.1




This small cross-section is considered flat on top and bottom, an approximation that is believed to be
sufficiently close to the truth to support the approach.

It is important to identify another issue at this point. The concentrations and densities used will be
based on analysis conducted on waste samples that have been handled so that any gas trapped in the waste
would be released. Therefore, we have reduced the waste volume by the volume of trapped gas. So the
total volume is more usefully estimated as

v, =[ Zh,.®a,.] - Ve =[ D (K )®a,-]— Ve @.n
all voxels all voxels

We need to estimate the probability distribution for each term. Factors that affect the terms are
summarized in Table 4.1. We have constructed our measurement system around the assumption that there
is an origin to a rectangular reference frame for each tank with a true horizontal reference plane in the
vicinity of the top of the tank and a vertical centerline through the tank center. -

The top surface of the waste is assumed to be measured in one or more locations with varying
accuracy by ENRAF, Food Instrument Company (FIC), photo interpretation, or other means. Points
- across the top surface are estimated based on all of the location measurements and on the assumption that
the surface is a continuous undulating surface. A kriging technique is used to combine these data.

Due to limitation associated with the available data, we may use a nominal surface shape (i.e.; flat,
sloped, hill, funnel) to reflect the best estimate of the surface and appropriate level of uncertainty.

A similar approach is used for the bottom, but the waste surface is presumed to be much
smoother. Tank bottoms were designed to be either flat or saucer shaped. We do not assume they follow
either design perfectly. Allowance is made for bumps, warps, and bulges that may exist in the tank
bottoms. : ‘

The diameters of the tanks are nominally 75 feet or 20 feet with stated tolerances on the design
drawings. The voxels consist of vertical columns with horizontal cross-sections that are shaped as sectors
with a radial measure approximately 1 foot in length. This length will vary proportionately to any
deviation in total tank diameter. (For instance, if the probability distribution of a tank diameter is
presumed to have a 1% chance of being less than 74.8 feet, then the radial measurement will also have a
1% chance of having a length of 74.8/75 feet.)

Considerable work has been accomplished in estimating the volume of gas trapped in the waste of
several tanks. This work will be extended for use here. The volumes will be converted to temperature
and pressure values estimated to be in the tank at the time the volume measurements were made.
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Table 4.1. Error Sources Affecting Total Tank Waste Volumes

: Error Sources
Term Affecting the Description
Term
hy' E' Horizontal reference plane error
associated with riser/data source r of
tank i

EY% Instrument calibration error for
riser/data source r of tank i.

E'%; Noise for riser/data source r of tank i.

E"Y; Parameters for interpreting locations of
top surface of waste in tank i.

E"s; Deviation from location j of tank i,
given information from all risers/data
sources r = 1, ...R and resuits of
kriging program.

hy’ E™y Horizontal reference plan error of
estimated distance between tank
reference frame and bottom reference
frame. .

E"%; Parameters for interpreting locations of
bottom surface of waste in tank i.

E"s; Deviation from location j of tank i,
results of kriging program.

a; E"%; Deviation from nominal size of
horizontal cross-section of voxel j in
tank i.

V& E'e; Volume of gas

411 Comments on the Estimation of the Parameter for E",;, Uncertainty in Absolute
Riser Elevations :

Since the calculation method for determining volumes relies directly on the tank-riser elevations
- and other reference points for other measurement systems, the uncertainty in those elevation
measurements will affect final volume estimates. The report, “Waste Tank Risers Available for
Sampling” (Lipnicki 1997) lists the riser elevations for many risers in each tank. Several riser elevation
benchmarking studies were performed in the early 1990s. As a result, 209 cases spread between 100 tanks
have multiple measurements for the elevation of the same riser. These data will be analyzed using
statistical methods.

4.1.2 Comments on the Estimation of the Parameters for E"Y,;,, Instrument Calibration
Errors, and EY;;, Instrument Measurement Error (Noise)

Instrument calibration errors may occur when instruments are periodically replaced, cleaned,
and/or recalibrated, causing a noticeable one-time change in waste level. These instruments are apparently
more effective at measuring relative changes in surface level than absolute surface level. Unfortunately,
the absolute surface level is what is used to calculate waste volumes. The calibration error can be
estimated by identifying all calibration points in the surface level measurements.
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Instrument measurement error (noise) is inherent to the measuring device and is not due to the
calibration factors listed above.

These two sources of error can be estimated for data that come from ENRAF or FIC by fitting the
surface level data for all 177 tanks to an ANOVA. We created a data set that contains 435,454 raw
surface level measurements from 1/1/1990 through 1/16/1998 for all 177 tanks. Observations labeled as
suspect and observations taken with the FIC in intrusion mode were removed from the data set.
Observations taken with the FIC in intrusion mode are not true surface level observations because the FIC
probe is lowered to a depth above the waste surface, and conductivity across the probe is not achieved
unless the waste surface rises with the intrusion of water or other materials. The cleaned data set contains
309,141 surface level measurements for all 177 tanks. The ANOVA model fit for this data set will
provide insight into the uncertainty associated with the error sources.

4.1.3 Comments on the Estimation of the Parameter for E""", Error Source of the
Difference in the Horizontal Reference Plane, Error of Estimated Distance Between
Tank Reference Frame and Bottom Reference Frame '

We expect to be able to estimate the error difference for each tank and estimate the uncertainty about
it from design drawings and other tank-specific data sources.

4.1.4 Comments on the Estimation of the Parameters for EV;, EV5, E'?,;, EV’s.

e EY; =Parameters for interpreting locations of top surface of waste in tank i.

e EY';=Deviation from top location j of tank i, given information from all risers/data sources r = 1
-.R and results of kriging program. '
E"®,; = Parameters for interpreting locations of bottom surface of waste in tank i.

e E"; = Deviation from bottom location j of tank i, given information from data sourcesr=1, ...R and
results of kriging program. '

b

These parameters are associated with the spatial interpolation of a few measured data sources for the
top of the waste to estimate the top of all voxels, and similarly, for the bottom of the waste surface. We
will estimate the value of the parameters from the values of the measured data sources.

4.1.5 Comments on the Estimation of the Parameters for E'*,;, Voxel Horizontal Cross-
sectional Area Uncertainty

A perfect cylinder 75 feet in diameter (450 inches in radius) would exhibit 2,754 gallons of volume
per inch of height. Conversely, a tank with a volume conversion of 2,750 gallons per inch would represent
a tank with a radius of 449 % inches. If the construction tolerances allowed for + 1 inch in radius, then a
volume uncertainty of 24 %: gallons per inch would be introduced. This represents a volume error of
approximately 0.9%. If the construction tolerances were + 2 inches, the volume error would be 49 gallons
per inch or 1.8%. The construction tolerances should be reported on the as-built drawings or construction
plans. For the AN double-shell tank (DST) tank farm, the tolerance is listed as + 2 inches (Drawing No.

‘H-2-71975). Since the tank farms were constructed over a period of decades, it is highly conceivable that
the construction tolerances were different for various tank farms.
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4.1.6 Comments on the Estimation of the Parameters for E ‘1.,, Volume of Gas Trapped
in the Waste of Tank i

The current concentration estimates for tank wastes do not account for any gas trapped in situ
within the waste matrix. Upon sampling, this gas is released before measuring waste density and analyte
concentrations. When gases accumulate in the waste matrix, the waste is essentially diluted by the amount
of trapped gas present, relative to the analyte concentrations measured in the laboratory. Although gas
trapped in the waste matrix will be affected by changes in atmospheric pressure, this effect is small
relative to the volume of gas. This parameter can be approximated using the total volumes of flammable
gas estimated by Blaine Barton and Paul Whitney. For many tanks, this value will be very small.

4.2 Sludge Volumes by Waste Type

For the sludge portion of wastes, volume distribution in a tank needs to be developed for each
waste type. Although volumes by waste type are very difficult to measure and, therefore, little measured
data are available, the historical tank-waste transaction records can provide an avenue to obtain such
estimates. In fact, point estimates of the sludge waste volumes by waste type have already been provided
in the HDW model by the LANL team.

Recently, the LANL team has agreed to extend their work to furnish uncertainty estimates for
these volumes. The uncertainty estimates, presumably centered at the current HDW model point
estimates, would be developed based on transaction frequency of a tank and the amount of each
transaction. With a distribution assumption, typically normal, volume distributions for saltcakes can be
built using the point estimates as means and the uncertainty estimates as variances.

4.3 Supernatant Volumes

The supernatant volume estimates provided in Hanlon’s report (Hanlon 1997) are used as the
point estimates. Potential data sources for assessing the uncertainty associated with the supernatant
volumes include gamma and/or neutron log data, waste-temperature measurements, and tank photos.
These measurements may help to identify the border between supernatant and sludge/saltcake layers. The
approach for developing volume distributions for supernatants is still under investigation.
4.4 Saltcake Volumes

The saltcake volumes are determined by the following equétion:

Saltcake Volume = Total Volume — Sludge Volume — Supernatant Volume 4.2)

This indicates that the saltcake volume in a tank is not independently distributed, but bounded by

the other three volumes. Therefore, volume distributions for the saltcakes may not need to be built

separately. However, a procedure is required to restrict this calculated quantity within a reasonable
physical range. This procedure is currently under development. )
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5.0 Conclusion

The methodology presented in this paper is based on scientific principles, sound technical
knowledge of the realities associated with the Hanford waste tanks, the Hanford “Best Basis™ research,
chemical analysis of samples from the tanks and historical data. It is difficult to estimate tank contents
and uncertainty intervals for tanks and analytes for sampled and unsampled tanks and for measured and
unmeasured analytes, but it is necessary to accomplish the Hanford mission. This methodology presents a
reasonable approach that parallels the approach taken by the Hanford “Best Basis” team and uses sound
mathematical principles.

The approach partitions the waste into three groups:

1. Sludges are residual solids that settled out of the waste slurries, often remaining in the same tank to
which they were first transferred. Interstitial drainable liquids are considered to be a part of sludges.
Four saltcakes are also included in this group, but easily identified: B, BY, T1, and R saltcakes.

2. Saltcakes are formed as precipitates from supernatant, often as a result of the coolmg after the waste
completes the evaporator process.

3. Supernatants are liquids that stand on top of sludge or saltcake layers in the tanks.

Each of these has a generated probability distribution based on the probability distributions for:

1. waste concentrations (micrograms [microCuries] of a specified analyte per gram of waste or per
milliliter of waste),

2. density (grams of waste per liter, if concentratlons were on a weight basis),

3. volume of waste.

The estimation of the three probability distributions uses direct or indirect measurements of the
three quantities, whenever possible, and historical process records.

The development of this methodology has evolved considerably over the past few months to a

more implementable approach. We anticipate more changes, and refinements will be necessary in the
upcoming months as more investigations into the exact nature of the available data are completed.
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