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The FY1994 DST/SST blend was prepared in accordance with the DST/SST blend feed
speciﬁcation“’ . The laboratory preparation steps and observations were compared with an existing
experiénce base t0 verify the acceptability of the feed specification for simulant make-up.

The most significant test results included 2 variety of features. Ferrocyanide breaks down to
NH, plus formate during the Jow-temperature calcining phase of the tests. Ferrocyanide displayed 0
redox reactivity with the nitrates and nitrites contained in the slurry in the absence of sugar. Sugar
displays a redox reaction with the nitrates and nitrites in the blend similar 10 the redox reaction
observed in the LLW feed simulant. '

Boiling of a free flowing slurry occurs 4t temperatures below about 120°C. When about 45%

_of the total water loss has occurred, the feed slurry congeals and continues to lose water, shrinking

and developing shrinkage cracks. Water stops coming off between 350°C and 400°C. Slurry shear
strength and viscosity strongly increase as the weight percent solids increases from 20 wt% to 45
wt%. The 45 wt% solids corresponds 10 approximately 40 % water loss.

The principle heat sensitivity, for this material is the exothermic reaction which is activated
when the temperature exceeds about 250°C. The breakdown of ferrocyanide to ammonia and
formate under strongly basic conditions may begin 2t temperatures less than 100°C, but the rate
increased strongly with increasing temperature and appeared t0 be completed in the time of our tests.
Differential thermal analysis (DTA) results on feed slurry without and with ferrocyanide showed only

endothermic behavior. This is consistent with the dry out and low temperaturé calcine studies which

-did not indicate any exothermic behavior for the feed slurry with and without ferrocyanide. Feed

slurry containing sugar equal in weight to the nitrate plus nitrite content (20% of the total oxides per
liter (TO/L)), displayed a distinctly exothermic activity with light and smoke production.

Physical property observations include the following: The feed slurry coats both glass and
stainless steel in the liquid state. The material spalls and falls off as it dries leaving a thin, more
adherent, film behind. The only phase separation observed during these 1ests occurred as a result of
the water condensate Jeaching from the slurry boil spatter. Salt containing condensate re-evaporated
as it ran down the side of the reaction vessel Jeaving a ring of separated white salts on the vessel wall.
The sugar containing slurry simulant exhibited a volume expansion as a result of the exothermic
reaction between sugar and nitrate and nitrite. A yellow salt separated from the glass melt made
during the quartz crucible test which looks like salts observed to separate from other HLW simulant
melts (NCAW based) and identified as sodium sulfate with 2 small amount of potassium chromate.

(a) E. M. Traceg, M.D. Merz, G. K. Patello, and K. D. Wiemers. 1995. Feed.Seeciﬁcation for
the Double-Shell Tank/Single Shell Tank Waste Blend for High-Level Waste jtrification
Process and Melter Testing,C95-02.02H
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1.0 Introduction -

A high level waste (HLW) Vitrification Facility (IVF) will be constructed at Hanford to
convert pretreated HLW and transuranic (TRU) waste to 2 durable vitrified form for final disposal in
2 federal geologic repository. Recent renegotiation of the Hanford Federal Facility Agresment and
Consent Order (known as the Tri-Party Agreement (TPA)) invoked several baseline changes which
affected the planned approach for disposal of Hanford Site tanks wastes. The HLW program was
expanded to encompass the retrieval and remediation of all underground storage tanks, including
Single Shell Tanks (SSTs) as well as previously planned Double Shell Tanks (DSTs). To mest the
high capacity requirements t0 the new HVF, two melter technologies, the joule-heated, high-
temperature melter (HTM) system and the cold-crucible melter (CCM) were selected for further
technical assessment®. A DST/SST waste blend composition developed by WHC®, will be used to
assess the performance of these dryers and calciners. The DST/SST composition will also provide the
reference composition for the feed preparation process flowsheet development. Specific technology
development needs related to the baseline process flowsheet requirements are identified by Orme

(1994). .
Thé overall investigation addressed three primary areas:

° preparation of the DST/SST waste blend simulant to verify the feasibility of the make-up steps

as given in the feed specification (milestone C95-02.02H) and to provide a source of simulant

for laboratory testing,

° laboratory evaluation of feed preparation process flowsheets for the HTM and CCM systems,
and

. laboratory evaluation of dry-out and calcination process steps.

This report focuses on the last of these three general investigation objectives.

() R.B. Calmus. 1995. High Level Waste Melter Alternatives Assessment Decision, Lerter to.
L. Erickson. #9546834

®)  R.W. Powell. 1995. Double-Shell Tank/Single Shell Tank Waste Blend Composition for
High-Level Waste Vitrification Process Testing, Letter t0 J.M. Creer. #945712
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2.0 Test Objectives

The primary test objective was to provide a preliminary assessment of DST/SST melter feed

drying and calcining which could be used in the CCM or HTM vitrification flowsheet prior to feeding
the melter to increase metler feed processing capacity. Assessment of dry-out and calcining included:

1.'

Gas composition and generation rate

The offgas generation rates were measured as a function of time. From this information the
maximum generation rate and the total amount of gas evolved was determined. It was
important to identify toxic, flammable, and/or explosion hazard species 0 that the plant off-
gas system is designed to mitigate the hazards associated with them. In addition, it was

important to know the rate of gas generation so that the dry-out, calciner system will not over
pressurize during operation.

Feed composition

The feed composition (wet, dry, and calcined; with and without glass formers) was taken to
be the target slurry simulant composition and target feed composition.

Water Loss Characteristics

The water loss during dry out and low temperature calcination was determined as a function of
time and temperature, Also, it was important to correlate water loss with the rheological
properties of the feed, so that the slurry behavior in a calciner can be predicted.

Transport/theological properties

The rheological properties and density were determined as a function of weight percent solids.
These properties strongly influenced the rate of calcination and the nature of the calcine
product produced, i. e., thin and scalely, thick and blocky, dense, porous, €tc. ’

Bulk Properties

Calcined bulk density pro\'iaed a measure of the volume of material that would be produced
by the calcination process. It would also provide information on the thermal conductivity of
the dried feed. The bulk density was estimated from pieces of calcined feed that were

" weighed and, because of their regular geometry, their volume could be approximated. The

hygroscopic characteristics of the calcined feed were determined from the measured weight
gain of a fragment with time standing in laboratory air.

Heat sensitivity

This was an observed characteristic which was noted during the test or from viewing the video
tape of the test. Changes of rheology as a function of temperature would be an example of
this property.



9.

10.

11.

Enthalpy changes
Samples of sIurry.wete evaluated by DTA to identify exotherms and endotherms.
Stickiness

Based on visual observations, the tendency for the slurry to adhere to the vessel walls and the
stainless steel stirrer as dry out and calcining occur was documented.

Abrasiveness, hardness

The feed cake abrasiveness was expected to be a function of its batch materials until its
components begin to react and/or fuse together during calcination. The composite hardness
was expected to be a function of the degree of calcination. Over the range of the present test
conditions, the silica sand would be the principle abrasive phase. No specific measurements
for this property were planned. )

Phase separation

The dried-out /calcined material was examined visually for a separated phase. Segregated
salts were the most likely to occur.

General observations (color changes, caking, etc.)

These observations were taken as part of the test record and were correlated with the other.
properties measured during this study.



3.0 Procedures, Equipment, and Materials

3.1 Transport and Physical Properties

The DST/SST wasté blend simulant with glassformers was gradually dried out by heating. At
several stages of drying, weight percent solids, density, and rheological properties were measured.

Density and weight percent solids were measured using HWVP technical procedure WTC-006-
4, To determine density, 2 measured volume of slurry simuiznt at ambient temperature was weighed
and from that grams pet unit volume was calculated. ‘Weight percent solids was determined by
weighing a shurry sample and then weighing the sample after it was dried for 24 hours at 105°C and
caleulating the remaining percentage of weight.

Rheological characterization was performgd at 50°C using the s2mé procedure. The
theological values were measured using the Haake M5 measuring system with the MV2 sensor.
Rheograms were generated by increasing the applied shear rate-from 0 t0 451 1 in a 2 minute

P

interval. The increasing shear rheology data were fit with the Bingham equation:

T =T+ H

where

¢ = shear stress,

1, = yield stress,

y = shear strain rate, and
p = plastic viscosity.

Bulk density and hygroscopy were also measured. After the melter feeds were calcined at low
temperatures (section 3.3), pieces of the reacted feed were carefully measured and weighed. From
their calculated volume and their weight, 2 density was calculated. To test the hygroscopic nature of
the calcined feeds, several pieces from the first three tests were allowed to stand exposed to the
Jaboratory atmosphere for up to 140 days. The fragments were weighed before the exposure started

and then, reweighed periodically 10 identify any changes in weight that would indicate the uptake of
water.

-3.2 Thermal Analj’sis

Thermal gravimetric analysis and differential thermal analysis were performed on the
DST/SST waste blend simulant with and without sodium nickel ferrocyanide. A model SDT 2960
Simultaneous DTA-TGA manufactured by TA Instruments, Inc., New Castle, Delaware was used to
perfo;m the analysis. The samples were heated from 30°C to 1350°C at 30°C/min in alumina oxide
crucibles. ’



| 3.3 Low-Temperature Calcination

The system that was used 10 calcine (boiling to 500°C) the simulant materials is shown in
Figure 3.3.1 and is described below. The instrumented reaction vessel consists of a 2-L Pyrex kettle
placed in a temperature controlled heating mantle, The Pyrex kettle lid is modified to accept several
thermocouples, an agitator shaft connected 10 a stir blade, condenser, a divided sweep gas inlet (one
jet to the bottom of the vessel and the other directed at the vessel lid to keep a window clear for the
video camera). A second condenser is added in series 10 the first condenser connected to the vessel
lid. The sweep gas, argon with a helium tracer, carries off-gas from the reaction vessel plenum,
through the condensers to the off-gas measuring system (Figure 3.3.2). Three thermocouples are
placed in the reaction vessel to detect temperature gradients.

Figure 3.3.2-is a schematic of the off-gas measuring equipment configuration. Because of the
dynamic nature of the dry-out/calcination chemistry and resultant gas generation, real time monitoring
capabilities are employed to characterize the generation rates of the major gaseous reaction products.
The emission. rate behaviors of H,, CO;, N;0, CO, O,, and N, are monitored using a gas
chromatograph (GC). A Chemiluminescent NO/NO, analyzer is used to measure NO,. Over 95% of
the NO, medsured was NO;. The nominal sample rate of the GC is approximately 80 s, while the
" nominal sample rate of the NO, analyzer is 60 s. A Fourier transform infrared (FTIR) spectrometer

analyzes gas samples on an approximately 3 minute cycle time which provided a backup analysis for
each of the above gases, except for H; and O, plus NH,. The spectrometer is also used for the
detection of other unknown, infrared (R) sensitive gaseous species, such as volatile organics and
cyanide. Note sscpm on Figure 3.3.2 stands for standard cubic centimeters per minute.

The dry out and calcination laboratory processing and characterization methods are as follows:

1. Four hundred mL of prepared melter feed slurry was placed in the reaction vessel. The
sweep gas flow through the plenum of the reaction vessel was established (1.95 L per min),
and stirring of the slurry at about 60 rpm was started. The slurry surface appearance was
recorded using a video tzpe recorder and wes viewed through the reaction vessel lid.

2. The slurry was heated in 2 stepwise fashion using thermocouple #4 as the control
thermocouple. The temperature was allowed to reach a maximum for a given control setting,
and then the control point was reset to 5°C above the maximum temperature attained at the
previous control value. For these tests, the temperature was set first to 100°C. Typically
there was a thermal overshoot of several degrees, so the temperature set point was usually
incremented by 8°C to 12 °C. This procedure was continued until the slurry was dry and
cracked, then the temperature increments were increased to 20°C above the maximum
(increase the set point by 25°C to 30°C). This routine was continued until the temperature
artained at the center of the reaction vessel was approximately 350°C. This temperature was
held for 20 to 30 minutes and then the power was turned off.

3. Coincident with the above heating, the temperatures were recorded at 1 to 3 minute intervals,
the off-gas was analyzed as described below, measured amounts of condensate were taken at
regular time intervals, and the video camera was recording the surface of the slurry. In
addition, the times at which the set point for the mantle heater was changed were recorded in
an observation log.
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4. At the conclusion of the test, when the dried and calcined melter feed had cooled enough t0

allow the reaction vessel to be opened, additional video pictures Were taken of the melter feed
as it was being removed from the vessel to show the degree of adherence to the vessel walls

and the stainless steel stirrer.

3.4 High-Temperature Calcinatioﬁ

This system consists of a quartz crucible reactor equipped with an on-line chromatograph-mass
spectrometer and viewing port (Figure 3.4)® in which the dried simulant can be calcined up to

1300°C in a furnace.

The DST/SST waste blend simulant was dried at 105°C in air for 24 hours then crushed for 2
minutes in an agate disc mill to -120 mesh. Samples were stored at atmospheric conditions before use
in the quartz crucible. Three grams of dried melter feed were transferred to the quartz crucible. An
ultrasonic cleaner was used to remove feed from the quartz crucible sides. The slurry feed samples

were heated in the quartz crucible reactor from room temperature 10 1300°C at a rate of 10°C/min..

- Offgas was analyzed by Gas Chromatograph-Mass Spectrophotometer (GC-MS) (Hewlett
Packard models 5890 and 5971, respectively). The GC Pora PLOT Q column was maintained at
90°C. The inlet pressure was 6.1 psi and a corresponding backpressuré regulator was set at 6.1 psi
(to avoid baseline upsets). GC injections of 0.5 ml were made once 3 minute by a valve rotator which
allowed the gas species t0 be identified every 10°C. AnAr + 1% He sweep gas was introduced to
the quartz crucible at 2 flow of 400 ml/min while maintaining an overall gas pressure of roughly 42
KPa (6.1 psi). The mass spectrometer was operated in a scanning mode.

3.5 Materials

The FY1994 DST/SST blend was prepared in accordance with the DST/SST blend feed
speciﬁcation“” . ‘The laboratory preparation steps and observations were compared with existing
experience base t0 verify the acceptability of the feed specification for simulant make-up. The
DST/SST blend simulant was used for the dry out and calcine assessment tests. The batching
compounds and target composition are given in Table 3.5.

(2) P. A. Smith, 1.D. Vienna, and M. D. Merz. 19%4. NCAW Feed Chemistry: Effect of Starting
Chemistry on Melter Offgas and Iron Redox, C94-03.02K

®) E. M. Trace Merz, G. K. Patello, and K. D. Wiemers. 1995. Feed Stpeci.ﬁca}t,ion for thg
ication Process an

, M.D.
Double-Shel_FTank/Single 2hell Tank Waste Blend for High-Level Waste Vitri
Melter Testmg,C95-02.02H
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Table 3.5. Blaod Siamlext Maks Up

Baiching Compound

AgNC3
AXOCH), NaSAJESISC24(N03)2(Cancrinit)
HSBOS
Be(GHj2:8H20
BiNC3)3e5H20
Ca(OH)2
Ca(cH)2
Ca(RO3)36H20
N
Co(NO3)206H20
Cr(NO3)39H20
CaNCs
CuSO4eSH20
NaKLaF3 NEF3)
Fa(NO3)35H20
Gel2
HzO
ROH
1aF3, Ly(OH)3
120
Mp(NO3)2+6H20
MaN03)2, XVaO4
MoC3
NeOR
NENCS)3+6H20 , NdF3
Ni(NO3)206H20
Na3po4
P(NO3)2
PaNO32
Pr(NO3)3+6H20
RbONC3)
Re207
RbNO3)2
RuNO(NO3)3
SH203
Se02
Sio2
Sm(NO2)36H20

$aCRe2H20
Na2S04
SINO3)2
Ta208
TeO2
Tio2
NaZWOLe2H20
Y(NO3)3+6H20
ZaN0O3)2+6H20
ZrOMNDS)2

Batching Compound

NaNO3
NaNO2
NsOH
Na2CO3
NuJO3
N2Q204
N2NiFe(CN)6

moles elecn. /
L8 WO,

0.00005
0.33500

0.00619
0.01310
0.04330

0.02110
0.00122
0.00016
0.00790
0.00031
0.00015

" 0.03830

0.13300
0.00000
0.00005
0.00626
0.00349

6.00253
0.02730

1.03000
0.06330
0.04040
0.03810
0.00178
0.00036
0.00015
0.00009
0.00000
0.00013
0.00050
0.00019
0.00029
0.22100
0.00000
0.00000
0.00566
0.00530
0.00000
0.00002
0.00012
0.00300
0.00012
0.00028
0.07700
2.25625

WME Oxids

0.0330

0.0004
0.0002
03620
0.4400
0.0004
0.0031
0.0074
0.1850
0.0105
0.01¢5
7.5900
100,0045

g Asica/L.
(s1118 ¢ oxide/1)

2.9
1.74
2.3
.14
0.00039S
0.433
23
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4.0 Results and Discussion

The principle objectives of this work were 10 characterize the changes that occur in the
DST/SST waste blend simulant as a function time and temperature. Since time was the only
independent variable, all the variables are presented as a function of time and any dependence of the
variables on temperature is determined from their dependence on time. .

The five tests performed are described in Table 4.0. They include two tests of the blend
simulant without ferrocyanide, with two levels of ferrocyanide, and with ferrocyanide plus sugar. All
but the test containing sugar were made up to a melter feed composition that was 65% waste oxides
and 35% SiO,. The variability was the result of adding silica based on assumed gWO/L values which
weré subsequently found to be high, hence, the excess silica. Chemically this should not affect the
melter feed behavior because of the inertness of silica sand. Physically, the additional sand raises the
solids loading and may shift the rheological properties t0 higher values. The "mass delta” represents
the difference between the starting weight and the sum of the parts (condensate, residue, offgas, and
any samples taken). This number is highest for the tests with the most water. This suggests that
water vapor escapes through Jeaky joints in the system and the saturates the dry sweep gas. The final’
columns give the gWO/L and gTO/L based on measured values.

4.1 Low-Temperature Calcination

4.1.1 Water

Following the procedure described above, water was driven off at a rate that increased until

_the temperature was uniform throughout the slurry, 2s shown in Figures 4.1.1.1 to 4.1.1.5. The rate
of water loss was maintained at about 3.5 g/min until the slurry began to solidify at the vessel walls.
(The evaporation of water at this rate takes about: 130 warts of power.) The net affect was to collect
water toward the center of the vessel and then the same relationship between solidification and
temperature rise was observed at the center of the vessel. Though at the center of the vessel, the
temperature transition was more rapid because it involved a much smaller volume of slurry. The
slurry did not cease releasing water until the slurry had reached a maximum temperature between 350
and 400°C. Figure 4.1.1.6 is a comparison plot with the water loss rate plotted as “percent H20™
and the total water loss plotted as "cumulative percent H20," both as 2 function of time. The figure
shows that the dry out profiles for the last four tests are similar. The first test was a scoping test to
allow us to see what to expect during these tests.

During the dry-out, the siurry appeared to first congeal to a dark uniform material which did
not inhibit the stirring action of the rotating blade. As more water was driven off, the slurry agitated
by the blade became thicker and piled up in front of the mixer blades. The slurry beneath the blades
solidified before the slurry that was agitated by the blades. The solidified slurry contained numerous
air holes through which boiling still could be observed. After solidification, shrinkage cracks
devei?ped in the solid feed which appeared to grow continually until water ceased coming out of the
vessel.

11



k Table 4.0-Blend Test Summary

intial Sty Dried Foed ~
. Iest Fe(CNIS lovel reductant GlassComp=  Massfo) Eoalwi () oWOA  Stag Vol(ml)  YeOA.

T65-HTM-DR-C-1 - none negligble S102-0.659/9 649.2 207.2 188 523.4 294.0

T95-HTM-DR-C-2 . none nogligbls  S102-0.81g/g 495.5 110.2 150 419.1 261.3

T95-HTM-DR-C-3 ' 0.9 g CN*/ FeCN §102-0.579/9 509.7 133.8 172 4154 262.1

TS5-HTM-DR-C4 - 28 gigugwo FCN  SI02-0.54g/9 597.7 144.6 149 515.4 222.3

T95-HTM-DR-C-5 28 ;gygwo FeCN+Sugar# none 578.7 94 149 500.0 149.0
118 gWO

* analyzed value

# sugar was added equal 10 20% of the gWO

* Targe! silica addition was 0.54 g per gram of wasie oxides.
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Figure 4.1.1.1 Water Loss 2s a Function of Time, Temperature for Test T95-HTM-DR-C-1

13



T95-HTM-DR-C-2
400 I I T

v
7

350 t- . . -

. Cumulative H20less " _,_./._:

. o v
| 300 |- : o / / .
. Grams . o v
Temperature (°C) 250 i o / -
Less Rate (o/pericd) / B0 Vi /
’ ] 200 f= . 2 \77 v b
. '/ D
' 10 o A4 R
® /V
: v
100 |- PFxtk?ég:V:ﬁzv-v-v-y/'\ -
/ Center (°C)
]
50 |- ./ . HZO-I_%ss rate -
_. Qo= .
/’40» ° '\°\°-°\
oLa=tZ% 1 O=Qutro oo
o - 50 100 150 200
Time (min)
Figure 4.1.1.2 Water Loss 2s a Function of Time, Temperature for Test T95-HTM-DR-C-2
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Figure 4.1.1.3 Water Loss as 2 Function of Time, Temperature for Test T95-HTM-DR-C-3
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Figure 4.1.1.5 Water Loss as a Function of Time, Temperature for Test T9S-HTM-DR-C-5
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If the stirring blade had agitated the entire volume of slurTy, it appears that the slurry would
have solidified as a single mass rather than in stages as observed. This will be further diScussed

below under physical properties.
4.1.2 Other Gases

The offgas totals and peak rates are given in Table 4.1.2.1 and the evolution rates as a
function of time (temperature) are shown in Figures 4.1.2.110 4.1.2.5. Test T95-HTM-DR-C-1 was
a scoping test and the last portion of the off-gas data was Jost, therefore no N;O, CO, or H; were
observed. Little offgas activity was noted from the melter feed slurries made up from blend waste
simulant containing no ferrocyanide. When approximately 30 wt%’ of the target ferrocyanide has been
added (T95-HTM-DR-C-3), there is a significant increase in the amount of CO, generated, but other
gases do not appear 10 be significantly influenced. When the blend simulant is fully loaded with
ferrocyanide, as it was for test T95-HTM-DR-C4, there was significant increase in all of the nitrogen
containing gases and in CO,. Nitric Oxide displayed the largest release increase followed by N,O.and
CO,. Ammonia is also a significant product as discussed below.

The addition of sugar to the feed results in a significant exothermic reaction which heats the
reacting areas to incandescence. The exothermic reaction was also indicated by the temperature spikes
shown in Figure 4.1.2.5. Multiple spikes in the temperature and offgas generation were observed
‘because the reaction took place in limited areas as the dry out of the slurry simulant progressed.

Ammonia results are presented in Table 4.1.2.2 and in Figure 4.1.2.6. Ammonia generation
during the dry out and low temperature calcine tests was monitored and semiquantitatively measured
using the FTIR and acid (H,S0,) bubbler traps. The amounts of NH, evolved from the blend feeds
appears to be proportional to the amounts of ferrocyanide present in the feeds suggesting that the NH,
is a breakdown product of the ferrocyanide. In addition, the NH; generation occurs after dry out of
the feed as indicated by Figure 4.1.2.6. According to Tan and Teo (1987) and Robuck and Luthy
(1989) a reaction between the ferrocyanide and base (NaOH) will produce NH, and NaCOCH plus
other products. Their work was performed under atmospheric pressure at temperatures less than
boiling and under hydrothermal conditions for temperature up to about 180°C. The reaction is pH
dependent with the reaction going to completion at a pH of 10 or greater but not at a pH of 6.2.

They describe the reaction with the following equations:
CN + 2H,0 = NH, + HCOO" or 4.1.2.1)
6 Fe(CN)¢“ + 12 OH + 66 H,0 + O~ 36 NH, + 2 Fe,0, + 36 HCOO® 4.1.2.2)

According to our results, essentially all of the nitrogen associated with the CN anion reacts to
form -NH, consistent with the findings of the above authors. Our results are also consistent with the
reaction kinetics described by the above authors. Some reaction is observed under boiling conditions
but most of the reaction in the blend based melter feed appears to occur after the free water is gone.

The reaction must be occurring between hydroxides, hydrates, and the ferrocyanide in the blend
melter feed.

19



Table 4.1.2.1. ' Blead Dry-Out and Low-Temperature Calcine Test Offgas Data

- V.

T95-KTM-DR-C-1

. co2 B2 NOx N20 N2 co. CH4
Peak Rate - 0.027 0.0004 0.0758 0.013 0.032 0 0.0016 -
Total 0.96 0.005 1.96 0.059 4.94 0 0.006
T95-HTM-DR-C-2
X co2 H2 NOx N20Q N2 co. CH4
Pe2kRate  0.0097  0.0039 0.039 0.027 0.0158 0.0063  0.0025
Total 0.17 0.123 1.8 0.762 1.81 0.154 0.0038

T95-HTM-DR-C-3
cO2 ‘B2 NOx jirie] N2 co CH4
Peak Rate 0.124  0.0025 04 ° 0.0227 0.0183 0.025 0.0024
Total 3.46 0.056 12 0.483 1.56 0.399 0.0037

. T95-HTM-DR-C-4

: co2 K2 Nx N0 00N co  cu4
Peak Rate 1.13 . 0.00336 1.61 0.324 0.332 0.113 0.0041
Total 14.3- 0.0411 26.6 3.12 4,94 0.628 0.0247

T95-HTM-DR-C-5
COo2 B2 NOx 2O N2 co. CH4

Peak Rate 4.61 0.131 . -5.91 0.548 0.927 °  0.831 0.0082 .
Total 45.4 1.81 - 712 4.68 8.76 8.04 0.058
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T93-HTM-DR-C-1

T93-HTM-DR-C-2

T9S-HTM-DR-C-3

T93-HTM-DR-C-4

T9S-HTM-DR-C-§

sample
Primary Condensats
Secondary Condensate

Ammonla Teap Sampley
aone - not Indicated on FTIR

Expected NHI - 366 mg
Sample
Nit3-t
NI3-2
N33
NH3-4
NH3-S
Ni3-6

Expocied NIt3 - 1157 mg
Samply
Nif3-4
Nit3-2
Ni3-3

Expected NIt3 - 1157 mg

Sampie
NH)-L

" Nn32

NI
Nily4

4.1.2.2, Blend Dry-Out and Low-Temperture Calcino Test Ammoanla Offgas Data

1.9 mg/L
$3 mp/L

action @ ow Rat
0.2
0.2
“0.2

“0.12
“0.12
“0.12
“0.12

Expected NH3 - 0 mg

none - not fndicated on FTIR

Expected NH3 - 0 mg

Ammonia Trap Samples

Trap Vol fut, NI mefl,  gum Nif(me) cum, (mg) Qum, Time
6s.1 19.6 16.59 0.00 0
60 2.3 226 2.26 46
33 2.2 0.50 2.76 61
497 2.4 0.13 2.89 s
2.3 146.0 61.74 70.63 126
n2 1335.0 584.67 633.30 pl

671.89

Daﬁom_- Teap Samples

Teap Volwt, BEEB.EBEBEE?LI; mo

333 30 %3 .33 140
493 4300 1052.56 1060.88 167
42.9 6600 493.38 1554.23 184
1554.23
Ammonta Trap Samples
Teep Volfwt, NHI mefle m NI (mg)  cum, (mg} Cum, Time
6.4 290 136.30 136.30 63
1.2 420 53.47 191.77 81
48.7 810 $51.78 343,54 98
423 1900 s mn 143
mm

28

Time Period Rate(mg/min) el
Omin na 1.04
46 0.08 0.98
21 0.02 0.99
n 0.0l 1
N 1.8) 0.97
M 6.22 1.08

Time Peiod  Rate(me/min)

180 0.03
27 38.98
17 29.02

Time Period  Rate(me/min)
63

2.10
16 3.4
1 $.93
43 8.54
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When suger is 2dded, the amount of NHs appears to be reduced. PossiblYs the more
elevated temperatures associated with the exotherm resulting from the sugar-niuate-nimte reaction also
decomposes Some of the NHj. Decomposition of nitrate and nitrite by sugar is as follows:
C,;HzOn + 8 NaNO;-» 4 N&,0 + 4 N, +8CO, *+ 4 co + 11 H;0 4.1.2.3)
C,HxOu + 12 NaNO~» 6 N0 + 6o ¥ 6 O, + 6 CO + 11 H:0 @.1.2.4)

Another possibility is that the reduced NH, is the result of competing reactions involving the
ferrocyanide complex.

4.2 High-Temperature Calcination

The off-gases produced from the high-temperatre calcination of the DST/SST waste blend

simulant with sodivm nickel ferrocyanide (Figure 4.2) were CO,, Ha, Na» NO, and O;. N,, O,, an
NO generation started at 600°C and peaked at 900°C. The CO, offgased earlier, starting at 300°C
and peaking at 650°C. No CH¢or CO were observed.

The temperature ranse is correct for sodium nitrate and sodium nitrite reduction by:

. NaNO, ~» NaNO; + 1/2 O 42.1)
5 NaNO, - Na;0 + NO + O, and 4.2.2)
5 NaNO, = Na;0 + Na 312 0y 4.2.3)

A mole balance was performed assuming complete destruction of sodium nitrate, sodium nitrite,

sodium carbonate, sodium ferrocyanide, and sodium oxalate.

Table 4.2. Elemental Balance

Start Off-Gas
Element (mmg]eglg dried feed) (mmgleglg dried_feed)
N 2.2 1.39
C ‘ 0.36 0.98
(0] 6.78 6.00

Less N and O was measured than what was in the sterting materials and moré carbon was off-gased.
Since NH; was not measured and ferrocyanide decomposes 10 NH, plus other species, the nitrogen
deficit may be due to ammonia generation. The excess CO, maY represent take up of COz from the
atmosphere which would be expected for 2 very basic slurry such as the blend.
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A black glass (brown through a thin Jayer) was produced by the heat treatment. A thin salt
deposit was present on the surface of the glass pool. The salt had a yellow color and appeared to be
the same kind of 2 salt deposit observed on high temperature melts made using an NCAW type
simulant. In the case of the NCAW type melts, the separated salt was shown 10 be predominantly
sodium sulfate with a trac® of potassium chromate, which would account for the yellow color. Since
the "blend” and the NCAW based waste.have similar sulfate contents (0.36 wt% Vs 0.67 wt%), it is

believed that this is the same kind of separated salt deposit. _
4.3 Physical Properties, Transport Properties, and Thermal Analysis

4.3.1 Transport and Physical Properties

Density, yield stress, and plastic viscosity increase with increasing weight percents solids as
shown in Figure 4.3.1. At the lowest weight percent solids, the viscosity is 10.0 cp and the yield
stress is 2.6 Pa. These values increase exponentially 10 2 viscosity of 107 ¢p and a yield stress of
66.5 Pa at a weight percent solids of 44.

4.3:2 Thermal Analysis

The TGA-DTA results for both the DST/SST waste blend simulant with and without sodium
nickel ferrocyanide showed two regions of weight loss associated with two endotherms. These samples
had been dried at 105°C for 24 hours prior to this testing. The two endotherms are indicated by the
drops in the temiperature difference between the sample and the blank. For both simulants, the weight
loss was 40%. The first endotherm occurs at 150°C and the second 0ccurs at 750°C. These are

shown in Figure 43.2.

The first large endotherm of the TGA/DTA analysis was not associated with any offgases.
The second endotherm occurred at approximately the same temperature as the off-gas peak of Oz, N,
and NO. '

4.3.3 Shrinkage, Adherence, Material Strength

Table 4.3.3.1 summarizes the development of features during the dry out and calcining
process as a function of percent of water loss. The comments indicate that the slurry goes through a
process of thickening, congealing, and shrinkage with accompanying cracking during the final stages
of drying. In this table, the total oxides per liter weré calculated from the starting values and the
measured water loss. This is known to be an approximation but gives a good indication of slurry
concentration at the various stages of dry out.”

These results, compare consistently with the theology data (Section 4.3.1). The rheology
parameters, viscosity and shear strength, are both observed to be strongly increasing at 45 wt% solids
@.e., the weight of material remaining after drying the slurry at 105°C for 24 hours). This is
equivalent to about 450 TO/L (weight oxides is equivalent t0 about 70 wt% of the solids content). In
this range of TO/L, the feed slurry is partially congezled and this is the approximate time that the
temperature gradient begins to increase between the outside and the inside of the drying batch (see
Figures 4.1.1.110 4.1.1.5). This reflects the fact that heat was no Jonger circulating 10 the center via
fluid flow but by conduction which requires the estzblishment of a temperature gradient. Hence, the
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Figure 4.3.1. Viscosity, Yield Stress, and Density of the Blend Feed Equivalent to T95-HTM-DR-
C-2 as a Function of Wt% Solids
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visual observations presented in Table 4.3.3.1 are consistent with propesty measurements and
temperature profiles. The slurry feed appears 10 congeal at boiling temperature with about 45 %
water Joss. ’ .

Pieces of dried and low temperature calcined feeds were selected for their regular geometry,
carefully measured, and weighed. From their measured volume and weight, a density was calculated.
These values ranged from a low of about 0.54 g per cc to about 3.07 g per cc. From visual

observations of the calciried material, the range of density values was not surprising. Some pieces

. from surface areas 2pP quite dense while interior pieces contain 2 large number of voids. Table

4.3.3.2 and Figure 4.3.3. show the hygroscopic natre of the calcined feeds. For samples from

Tests 1 and 2, the percent weight gain increased to about 5% with in a few days and then seemed to

“tevel out. When all of the samples were rewejghed again after another 130 days, the weight gains had

increased to 7-9% over the initial weights. Since the initial series of weighings were made in April

"and the last sét of weighings were made in- August the increase of from 5% to 7-9% may be the result

of increased bumidity in the laboratory as well as the extended time. Note that observed relative
humidity values for the building where these samples were housed typically runs between 30% and

* 60% with an average of about 50%. After the above weight gains the calcined feed slurry still

appeared and handled as a dry material.
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Table 4.3.3.2, Hygroscople Welght Galn of Diied snd Calcined Blend Feed Samples

TEST TARE  SAMPLE°A® NET  ZXwimin  dn TARE  SAMPLE'R"  NET  Xwigln  dayy DATE
T9S-1ITM-DR-C- 1.6g 4.0533 2.4533 0.00 0 1.5¢ 3.0345 1.5348 0.00 [\] NS598
. 4.169 2.569 . 472 20 3.0926 1.5926 3.9 20 474198

4.1763 2.576$ 5.02 27 3.0967 © L5967 4.08 27 411198 ,
4.1766 2.5766 5.03 as 3.0968 1.5968 4.06 38 4119198
_4.2747 - 2.6747 9.02 143 3.1454 1.6454 123 145 8771198
T9S-HTM-DR-C-2 1.5742¢ 2.2796 0.7054 0.00 0 -.acn 2.107 0.647 0.00 0 3129198
2.2969 0.71227 245 2 2.1296 0.6696 3.49 2 s
2.2986 0.7244 2.69 [ 2.1309 0.6709 3.69 é 414198
* 2.2991 0.724% 2.76 13 2.1346 0.6746 4.27 13 411195
. 2.2986 0.7244 2.69 21 2.1344 0.6744 4.1 n 419198
. 2318 0.7408 5.02 131 2,153 0.693 711 13t 89S
T9S-HTM-DR-C-3 1.6¢ 4.6934 3.0954 0.00 (1] 1.4944¢ .u.uuuu 1.8588 0.00 0 4119M8

4.992 3an 6.38 110 3.4028 *1.9881 6.96 110 877195



Blend Calcine - Weight GaininAir
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Figure 4.3.3. Observed Weight Gzin of Dried and Calcined Blend Feed Samples Exposed to
Laboratory Air under Ambient Conditions
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1.

3.

5.0 Conclusions

Gas composition and generation raté (including water loss) -

A) Water is always the major component removed during drying with most of the water lost
by the time the slurry temperature has reached 120°C.

?
B) Ferrocyanide breaks down to NH, plus formaté during the calcining phase of the tests.
Ammonia Was observed in quantities proportional t0 the amount of ferrocyanide present in the
feed slurry. Ferrocyanide displayed no redox reactivity with the nitrates and nitrites contained
in the slurry. . :

C) Sugar displayed 3 similar redox reaction with the nitrates and nitrites in the blend as it did
in the LLW feed simulant.

D) Other offgases such as NO and CO, come off at higher temperatures starting generally at
350°C to 400°C and, based on qQuartz crucible results, continue t0 1300°C with 2 major O,
peak around 800°C.

Water Loss Characteristics -

Boiling of a free flowing slurry occurs at temperatures below about 120°C. When about 45%

of the free water has been lost, the feed slurry congeals and continues to lose water, shrinking

and developing shrinkage cracks. Essentially water stops coming off between 350°C and
400°C.

Transport/rheology properties -

Slurry shear strength and viscosity strongly increase as the weight percent solids increases
from 20 W% 10 45 wi%. This corresponds to an approximately 40 % water Joss.

Bulk Properties -

As the percent solids increases from 20 to 45 wt%, the slurry density increases from 1.07 glee
10 1.43 glcc. The dried and Jow temperatureé calcined material has 2 Jarge variation in
porosity which resulted in a large range of values for the bulk density for this material ranging
from about 0.5 g/cc t0 about 3.0 glcc.

Heat sensitivity -

The principle heat sensitivity for this material is the exothermic reaction which is activated
when the temperature exceeds about 250°C. The breakdown of ferrocyanide to- ammonia and
formate under strongly basic conditions may begin at temperatures Jess than 100°C, but the
rate increases strongly with increasing temperature and appeared 10 be completed in the time
of our tests.
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10.

Enthalpy changes -

DTA results on feed slurry with_out and with ferrocyanide shows only endothermic behavior.

This is consistent with the dry out and low temperature calcine studies which did not indicate

any exothermic behavior for the feed sturry with and without ferrocyanide. Feed sturry with
sugar added equal to the pitrate plus nitrite content (20% of the TO/L) displayed 2 distinctly
exothermic activity with light and smoke production.

éﬁckin%s -

The feed slurry coats both glass and stainless steel in the liquid state. The materia spalls and
£21ls off as it dries with thin more adherent film left behind. |

Abrasiveness, hardness -

The abrasiveness of the feed sturry is @ function of the silica sand content and sharpness. -

Phase separation -

The only phase separation observed during these tests occurred as 2 result of the water
condensate_leaching of slurry boil spatter. Salt containing condensate re-evaporated 5 it ran

down the side of the reaction vessel eaving a Ting of separated white salts on the vessel wall
just above the original slurry line. A yellow salt s_eparated from the glass melt made during
the quartz crucible test which looks like salts observed 10 separate from other HLW simulant
melts (NCAW pased) and identified as sodium sulfate with a small amount of potassium

chromate.

General observations (color changes, caking, )

One notable d"ifference between feed slurTy with sugar and the other slurry feeds was the
effect of sugar. The sugar containing feed exhibited a volume expansion as 3 result of the

exothermic reaction. The dried, reacted wast® slurry broke up into a mediuim sized (< 1 cm)
granular material.
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- Appendix A

Low-Temperature Calcine Test Data Summary
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