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AN APPROXIMATE-REASONING-BASED METHOD
FOR SCREENING FLAMMABLE GAS TANKS

EXECUTIVE SUMMARY

High-level waste (HLW) produces flammable gases as a result of radiolysis and thermal
decomposition of organics. Under certain conditions, these gases can accumulate within the waste for
extended periods and then be released quickly into the dome space of the storage tank. As part of the
effort to reduce the safety concerns associated with flammable gas in HLW tanks at Hanford, a
flammable gas watch list (FGWL) has been established. Inclusion on the FGWL is based on criteria
intended to measure the risk associated with the presence of flammable gas. It is important that all
high-risk tanks be identified with high confidence so that they may be controlled. Conversely, to

" minimize operational complexity, the number of tanks on the watchlist should be reduced as near to the
“true” number of flammable risk tanks as the current state of knowledge will support.

The FGWL screening process has several functional steps. The first is to determine if the available
information is sufficient to allow a meaningful evaluation of the tank. If so, the evaluation is
performed. The evaluation results in a recommendation on whether the tank should be on the watch
list. In this latter step, some statement of the confidence associated with the recommendation is
required. The actual process of going from some universe of information for a tank to a clear
recommendation on tank classification is a complex, frequently implicit combination of inferences about
flammable gas phenomenology. These inferences about gas generation, composition, retention, and
release characteristics for a tank are drawn from a large, diverse, uncertain, and often contradictory
universe of information. This universe includes

observations associated with gas-release events (GREs);

measurements and associated models for predicting volumes of retained gas; and

waste properties associated with empirical models to roughly estimate the potential for gas
generation, retention, and release.

It is quite common for a conclusion drawn from one set of data and models to be diametrically
opposed by some other set of data and models.

This report presents an alternative to existing approaches for FGWL screening based on the theory
of approximate reasoning (AR) (Zadeh 1976). Our AR-based model emulates the inference process used
by an expert when asked to make an evaluation. The FGWL model described here was exercised by
performing two evaluations.

1. A complete tank evaluation where the entire algorithm is used. This was done for two tanks,
U-106 and AW-104. U-106 is a single shell tank with large sludge and saltcake layers. AW-
104 is a double shell tank with over one million gallons of supernate. Both of these tanks had
failed the screening performed by Hodgson et al.

2. Partial evaluations using a submodule for the predictor likelihood for all of the tanks on the
FGWL that had been flagged previously by Whitney (1995).

The first evaluation provides insight into issues concerning input data, computational effort and
interpretation of the results. In the second evaluation, results from the AR model were compared with
those from the Whitney model.

One significant difference between the AR model results and those of Hodgson et al. for the
complete tank evaluations involved the interpretation of the long-term level data. Both of the tanks
failed the Hodgson screen based on this model for retained gas volume. However, in the AR model, the




quality associated with the data was inferred to be "poor" because of the large influence of the
correction terms.

In the Whitney analysis, the correlation between barometric pressure and waste level was
examined. If a large amount of gas is present, then with several important qualifications, there should
be a strong, negative linear correlation between pressure and level. Whitney examined a large number
of tanks (not on the current FGWL) and found 37 tanks where the correlation was found to be strong for
at least one level sensor. These tanks also were examined using the AR model. In addition to the
threshold criterion used by Whitney, additional statistical measures and judgments about data quality
were used. Rulebases also were added to take into account relative instrument quality and to resolve ’
differences between the inferences drawn for individual sensors. At the 0.95 quantile, the AR model
classified 11 of these tanks as having a strong correlation and inferred that for two of the tanks the
correlation was weak. Of the remaining 24 tanks that were classified as unresolved, an additional
classification could be made. By observing the cumulative distribution function (CDF) for the output
likelihood, it was possible to differentiate between tanks where the data were of reasonable quality
but contradictory and tanks where the data were judged too poor to allow a definitive judgment to be
made. Eleven tanks fell in this later category. The capability to make these types of judgments explicit
is an important attribute of approximate reasoning.

Screening waste tanks for flammable gas is a difficult undertaking. The difficulty arises because of
the incomplete understanding of the relevant phenomenology and the need to use partial, and
apparently contradictory, data in models that are themselves incomplete. Our pilot study of the
application of the AR methodology to this problem is encouraging. The inductive logic structure and
the associated series of implication rule bases make a realistic representation of the current state of
knowledge possible. The use of linguistic variables and fuzzy sets provides a way to combine
qualitative and quantitative data in a consistent way. The combination of fuzzy and probabilistic
approaches in the same model allows for a natural treatment of both uncertainty and ambiguity.

The pilot model showed that the effort required to build an AR model for a relatively complex
problem is reasonable and that computational requirements are acceptable. Preliminary analyses with
the model clearly demonstrated the value of incorporating qualitative judgments about data and
models directly into the screening logic. Differences between the results obtained with the AR model
and those obtained previously often could be explained as a consequence of the more detailed inferences
about model and data validity included in the rule bases. We conclude that AR is a promising tool for
this type of screening problem and that further development in this area would be useful.




Nomenclature

¥ ~ Temporal correlation for short term level and temperature changes
CDF  Cumulative probability distribution function
Cyv Maximum dome space flammable gas concentration using WHC quick screen
Co  Total organic carbon
Ah  Long-term waste level change
8h  Short-term waste level change
Short-term waste temperature change
Waste porosity
Liquid fraction of waste type i
Degree of membership vector
Gas generation potential for ith condition
Waste level
Current waste level
Number of level measurement intervals for level sensor i

Waste level
Centroid associated with degree of membership vector
Gas likelihood for i event or condition
K(A)  Membership function for fuzzy set A
n(A,x)  Value of membership function for fuzzy set A at x
N;  Multiplicity of measurements for dome space parameter i
PDF  Probability density function
Pi  Probability of random occurrence of negative interval proportion for level sensor i
Q  Quality judgment for long-term level change correction terms
qi  i™ quantile of a cumulative probability distribution function
q Volumetric heat generation rate
R? Linear mean square error coefficient for level sensor i

Do rRe e &

R;  Gas retention potential for i condition
S  Waste specific gravity

Si  Level-barometric pressure correlation slope for level sensor i
T  Waste temperature

i  Volume of waste type i

Certainty of estimated dome space maximum value for parameter i
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Subscript Nomenclature

Level measured in 1981
Barometric pressure correlation
Combined

Dome space

Derivative

Waste level change
Evaporation

Enabler

ENRAF level instrument

Food Instrument Corporation level instrument
Aggregate

Dome space gas concentration
Waste level

Indicator

Liquid

Manual tape level instrument
Measured

Supernate

Neutron log level instrument
Dome space overpressure
Predictor

Level change estimate for years before 1981
Solids

Salt cake

Total

Salt cake

Sludge

Wet salt cake

Interstitial




AN APPROXIMATE-REASONING-BASED METHOD
FOR SCREENING FLAMMABLE GAS TANKS

1.0. INTRODUCTION

In the interest of safety, a flammable gas watch list (FGWL) has been established for high-level
waste tanks at the Hanford Site. Inclusion on the FGWL is based on criteria intended to measure the
risk associated with the presence of flammable gas. Such tanks receive increased Department of Energy
(DOE) oversight and may be governed by special administrative controls that are designed to reduce
the risk from flammable gas ignition accidents. These measures have a substantial effect on tank farm
operations, and thus, selection of watchlist tanks is doubly constrained. It is important that all high-
risk tanks be identified with high confidence so that they can be controlled. Conversely, to minimize
operational complexity, the number of tanks on the watchlist should be reduced as near to the “true”
number of flammable risk tanks as the current state of knowledge will support.

There are several steps in the FGWL screening process. The first is to determine if the available
information is sufficient to allow a meaningful evaluation of the tank. If so, the evaluation is per-
formed. The result of the evaluation is a recommendation on whether the tank should be on the watch-
list. In this latter step, a statement of the confidence associated with the recommendation is required.
The actual process of going from some universe of information for a tank to a clear recommendation on
tank classification is a complex, frequently implicit combination of inferences about flammable gas
phenomenology. These inferences about gas generation, composition, retention, and release characteris-
tics for a tank are drawn from a large, diverse, uncertain, and often contradictory universe of informa-
tion that includes the following.

¢ Observations associated with gas-release events (GREs) such as level, temperature, and pres-
sure fluctuations as well as dome-space gas concentrations.

¢ Measurements and associated models for predicting volumes of retained gas. These include long-
term level change and the use of the correlation between level fluctuations and barometric pres-
sure as well as the retained gas sampler and voidmeter sensors.

» Waste properties associated with empirical models to roughly estimate the potential for gas
generation, retention, and release. These include waste specific gravity, total organic carbon,
specific activity, and waste stratigraphy and strength.

It is quite common for a conclusion drawn from one set of data and models to be diametrically opposed by
some other set of data and models. Data vary in terms of quality and the degree of associated uncer-
tainty, and models have varying powers of prediction. As a result, the evaluation must contend with an
entire series of qualitative judgments about what inferences regarding flammable gas phenomenology
are possible and how to resolve discrepancies among them. Compounding this problem is the fact that
perhaps as many as 177 tanks must undergo the screening, and some demonstration of consistent evalua-
tion is needed. This is difficult to achieve because of the wide variations in waste type, the large
differences in installed instrumentation, and the differences in the historical data base.

These attributes of the FGWL problem define a number of features that would be desirable in any
screening methodology, including the following.

¢ The method would have the ability to use both quantitative and qualitative data to draw
inferences. :

e All of the relevant information on phenomenology would contribute to the final inference about
the flammable gas state of a tank. ,

¢ An explicit evaluation of relative importance would be associated with a particular data/

model set.




The uncertainty associated with both inherent variability in data and incomplete state of
knowledge incorporated into phenomenological models would be represented.
e There would be a clear description of the flammable gas state of a tank and the associated
uncertainty. '
Tanks would be treated consistently to ensure comparability of evaluations.
Tank evaluations would be traceable and repeatable.
The approach would be compatible with the detailed level of review associated with the
FGWL.

In this report, we propose an alternative to existing approaches for FGWL screening based on the
theory of approximate reasoning (AR) (Zadeh 1976). Our AR-based model emulates the inference
process used by an expert when asked to make an evaluation. The primary characteristics of the AR
model developed here are listed below.

The relationship between data and models is defined explicitly by an inductive logic structure.
The inference process is implemented using formal logical implication.

e All of the relevant data are transformed into natural language expressions called linguistic
variables. A linguistic variable is represented in the model using fuzzy sets. The degrees of
membership in fuzzy sets are used directly in the logical implication operation.

e Judgments about the importance or quality of data and models also are treated as linguistic
variables. These judgments are incorporated explicitly into the inference model.

* Uncertainty is represented using standard Monte Carlo techniques for random variables.
Ambiguity is treated using fuzzy sets.

We explain how the characteristics listed here are incorporated into an AR-based model for FGWL
screening. Additionally, it will be shown that this method can be used to ensure that evaluation
criteria are applied consistently to all tanks. The task of documenting and defending the evaluations is
facilitated by the fact that the logic structure and the sequence of inferences in the AR model can be
traced directly to the subject matter experts used in building the model. That is, the evaluation
framework is developed principally by the experts rather than created a priori.

Section 2 is an overview of the FGWL history and the current approach to screening followed by an
overview of the AR methodology. Here we discuss the basic concepts used to construct an inductive logic
model that defines the relationships between data and models. The utility of the fuzzy set
representation of linguistic variables is discussed, and the use of rule bases composed of sets of logical
implications to carry out a series of forward-chaining inferences is explained. The evaluation process in
an AR model is examined using one small segment of the complete pilot FGWL AR model. We develop
the inductive model for making inferences about retained gas from the long-term level change data and
show how a likelihood statement about retained gas is obtained.

The development of the AR model is described in Sec. 3. We consider the form in which the evalu-
ation result is to be expressed and present an inductive logic structure that has this output. The logic
structure defines the relationships between the data, models, and judgments considered to be relevant to
the screening process and defines the order in which the sequence of required inferences is to occur. The
inferences are carried out using rule bases that specify the implications that can be drawn from related
elements of evidence. Example implication rule bases for each relation in the logic structure are pre-
sented. These are intended to illustrate the types of judgments that can be made and the degree of
sophistication that can be incorporated into the inferences. We develop the natural language descrip-
tions for elements of evidence and show how membership in fuzzy sets allows us to transform quantita-
tive data into linguistic variables and why these variables are used in the inference rule bases. It is
important to note that the emphasis in this report is on the AR model and the issues associated with
applying it to the FGWL screening problem. The actual logic structure, rule bases, and membership
functions given in this report are intended to illustrate the concepts and show the utility of the AR
method for this problem. .




The implementation of the AR model is discussed in Sec. 4. We describe the computer program used
to evaluate the logic structure and the preparation of the input data. The approach used for the Monte
Carlo simulation to obtain statistics for both the intermediate and final likelihoods and the use of
probability distributions to describe the uncertainty associated with both the input and the final
output are discussed. :

Results from several evaluation simulations are given in Sec. 4. We provide complete evaluations
for two tanks, U-106 and AW-104. U-106 is a single-shell tank containing thick layers of salt cake and
sludge, and AW-104 is a double-shell tank with over a million gallons of supernate. The entire infer-
ence chain is examined, and the interpretation of the output is discussed. We also performed simula-
tions using just the barometric pressure logic module for all of the tanks on the FGWL and those that
failed the screening described in Hodgson (1995). The results obtained using the AR approach are

“compared with both of these lists, and the differences are explained in terms of the features of the AR
model. Again, we emphasize that the model here has been developed for method testing and to
provide illustrative results. Although an attempt has been made to provide reasonable characteristics
for the model factors, the results must be considered preliminary. Additional expert judgment is
required to refine the screening logic so that it represents the current state of knowledge about
flammable gas phenomenology. '

In Sec. 6, we review the development of the AR model and discuss the advantages of this approach
based on the results of our pilot model testing. We conclude that the AR model is a powerful analytical
approach to FGWL screening and that a full-scale implementation is practical. We outline briefly the
steps needed to build a complete model for FGWL screening.




2.0. OVERVIEW OF FLAMMABLE GAS WATCH LIST SCREENING
METHODOLOGIES

In this section, we consider the options available for FGWL screening. To do so, we reviéw the
history of the watchlist and the development of the criteria currently used to screen tanks. The meth-
odology currently used to implement these criteria is discussed, and known problems with this approach
are noted.

We also introduce the concepts of AR. These include a discussion of information and evidence and
how these data are processed using a formal logic structure. The concept of linguistic variables and fuzzy
sets is introduced using a simple nontechnical example. We then illustrate the use of an AR model for
screening using a small logic module associated with long-term level rise and show how inferences are
drawn. This sets the stage for the detailed development of the AR model in Sec. 3.

2.1. Flammable Gas Watch List History
A useful starting point in the description of the screening methodology is to examine the evolution of
the FGWL.

The original watchlist was established in 1990. The tanks initially on the watchlist were those
believed to pose a potential explosion risk from the reaction of ferrocyanide/nitrate mixtures. This list
was compiled in response to the General Accounting Office and to the exposure given to the problem
during the confirmation hearings in the Senate for the Defense Nuclear Facility Safety Board. Later in
1990, the list was extended to include, first, tanks with a flammable gas hazard and, shortly thereafter,
those with organic and high-heat issues. Criticality issues were added to the watchlist concerns still later.
Tanks on the original FGWL were determined using a “slurry growth” criterion based on a cursory
review of tank records and supporting documents. The original FGWL had 20 tanks (WHC 1990).

The declaration of a flammable gas unreviewed safety question (USQ) was made in April 1990 by the
Department of Energy/Richland Operations Office (DOE/RL) (Lawrence 1990). Although the primary
emphasis was on Tank 241-5Y-101, the scope covered any tank that had the proper flammable gas genera-
tion and retention/release behavior.

Public Law 101-510 was signed late in 1990. Section 3137, the Wyden amendment, specifically
addresses significant safety issues in waste tanks at Hanford. Section 3137 requires that the Secretary of
Energy “identify . . . (which) tanks at Hanford . . . may have a serious potential for release of high-level
nuclear waste due to uncontrolled increases in temperature or pressure.” It places restrictions on waste
transfers to these tanks and mandates that the DOE pay special attention to their safety. The watchlist
tanks in each category were identified as meeting the criteria to be classified as “Wyden amendment”
tanks. That is, watchlist and Wyden amendment became synonymous.

At approximately the same time, an effort was begun to develop more detailed criteria for the FGWL
(Harmon 1991). A ranking system was developed to evaluate all waste tanks in terms of two conditions.

1. Potential for flammable gas production
2. Potential for gas retention and release at concentrations above the lower flammability limit (LFL)

Every tank was ranked for both conditions using a number of weighted factors, including surface-level
fluctuations and the detected presence of flammable gas. No attempt was made to incorporate specific
models for gas release. With this method, all of the original FGWL tanks were confirmed to be on the
watchlist, two tanks were added to the list, and one additional tank (SX-109) was included because it
shared a ventilation system with a number of FGWL tanks for a total of 23 tanks. Two more tanks were
identified as having the potential for gas retention (AW-101 and U-107) in 1993 and 1994. The tanks
currently on the FGWL are listed in Table 2-1. :




Table 2-1
Tanks on the Flammable Gas Watch List

Inadequacies in the FGWL criteria were well-known, and Westinghouse Hanford Company (WHC)
proposed new criteria in 1994 (Hopkins 1994). The new criteria explicitly addressed the phenomenology
associated with gas release and the subsequent release of radioactive material to the environment. In
addition, the Hopkins report (1994) examines the relationship of the criteria with the Wyden amendment.
It was proposed that the phrase “serious potential for release” be interpreted in terms of the WHC risk
acceptance guidelines (RAGs) for co-located worker and offsite consequence. In this context, the provi-
sion is interpreted to mean “identify tanks with a credible potential for serious release” (emphasis in
original). The criteria are given in Table 2-2. A safety factor of 4 is used for all cases. Basically, this
means that either the flammable gas concentration must be below 25% of the LFL or any over-pressuriza-
tion must be less than 25% of that which could cause a serious release. This factor is based on common
standards for fire safety (NFPA 1995) and pressure vessel design. The National Fire Protection Associa-
tion limits normally are associated with a control for operations in a flammable environment. Note that
the probability associated with exceeding these levels is not defined.

Table 2-2
Westinghouse Hanford Company Criteria for Flammable Gas Tanks (Hopkins 1994)

Condition in Tank Dome Space or Criterion
Ventilation Header
Flammable gas at uniform concentration— | The tank could have a uniform flammable gas concen-
steady-state condition. tration greater than 25% of the LFL in the dome space or

Flammable gas at uniform concentration—

dispersed-release condition

Flammable gas concentrated in a region The tank could release a plume [in-progress episodic gas

(plume) release (EGR)] with a volume greater than 25% of that

plume volume that, if ignited, could explode and cause a

serious release to the environment. (The volume varies

|| from tank to tank. It is expected to be about 0.25% of the
dome-space volume.)

The tank could have an over-pressure of more than 25% of

the over-pressure that could cause a serious release to the

environment. (The over-pressure varies from tank to tank.

An over-pressure of about 10 in w.g. could cause a serious

release.)

ventilation headers I

Over-pressurization




Because of the Wyden amendment, responsibility for the FGWL resides with the Secretary of Energy,
who has delegated it to the Assistant Secretary for Environmental Management. No DOE Orders define
how the watchlist is to be modified, that is, how tanks are to be added or removed (Lytle 1994). In prac-
tice, tanks are added on the advice of WHC and removed on a tank-by-tank basis. To date, no tank has
been removed from the FGWL, although it is expected that Tank SY-101 will be removed in the near
future.

An effort has been under way since 1995 to evaluate all of the waste tanks against the 1994 criteria
(Hopkins 1995; Hodgson 1995). In this work, models are used to relate tank observables, for example,
waste level fluctuations, to possible dome-space gas concentrations. In conjunction with this work, an
additional method has been developed to detect the presence of in situ gas. During the Tank SY-101
mixer pump project, it was noted that changes in waste level should be correlated with barometric pres-
sure because of the large amount of retained gas in the waste. Pacific Northwest National Laboratory
(PNNL) has refined this technique and applied it to all of the tanks (Whitney 1995). The results suggest
that gas may be retained in 38 additional tanks. Using further assumptions, WHC has calculated that 25
of these tanks would exceed the1994 criteria (>25% LFL steady state or from GREs) (Bacon 1996). These
tanks are listed in Table 2-3. No decision has been made by DOE/RL as to whether these additional tanks
are to be on the FGWL."

2.2. Current Screening Methodoiogy

Because of the statutory considerations associated with the Wyden amendment and the operational
concerns noted above, the methodology used in Hodgson (1995) has received close scrutiny. Problems
noted during the various reviews were considered sufficiently serious to warrant studying the develop-
ment of an alternative screening procedure for FGWL tanks. To understand the basis for the method-
ology described below, it is necessary to briefly discuss the criticisms associated with the existing
screening techniques. ’

Figure 2-1 is a simplified schematic of the logic structure used in Hodgson. Here, three estimates of

retained gas volume are made using tank level discrepancy, V,(Ah); the correlation between level and
barometric pressure perturbations, V,(B); and a quick screen method, V,(Q) proposed in Hopkins (1995).”
For V,(B), the maximum value calculated from the available level sensors is used. That is, the maximum
slope of level change vs pressure obtained from one or more of the FIC, ENRAF, manual tape, and
neutron log level sensors is converted to V,(B) using a simple gas-spring model. This maximum is

Table 2-3
Preliminary Recommendation by Barton for Flammable Gas Watch List Membership

“More recently another group was assembled by DOE/RL to review the recommendations in Bacon. This
group, known as the Vieth Committee, also has issued a report with its own recommendations on which
tanks should be on the FGWL.

™ Each of these approaches to calculating gas inventory will be discussed in detail in Sec. 3.
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Fig. 2-1. Logic schematic for screening approach in Hodgson.

compared with V (Ah) and V,(Q). Again, the maximum is selected. Additional parameters are intro-
duced to calculate the mass of retained gas and the amount released into the dome space assuming the
gas can be mobilized. By assuming a gas composition, this mass can be related to a dome-space flam-
mable gas concentration, Cg,. The maximum value for Cg,, C(max) is compared with a threshold value,
Ce(t), the previously mentioned 25% of LFL. If Ci(max) exceeds this threshold, the tank is considered to
have failed the screen and is a candidate for the FGWL. Tank observables and parameters are charac-
terized with probability distributions so that Monte Carlo simulation can be used to provide some




measure of uncertainty as input for the final decision. However, only point estimates are used in the
decision process.

The preliminary comparison with the LFL obtained in this manner is not the final screening result.
An additional evaluation (referred to here as the ad hoc judgment) follows and is made for two reasons.

* Calculation of C;, (max) does not use all of the information available about gas generation,
retention, and release phenomenology in a tank.
¢ Practically speaking, too many tanks had a value of C,, (max) above the threshold criterion.

In the ad hoc step, other information or expert judgment is incorporated, and a final evaluation judgment
is made. Thus, much of the decision process is done “off line” but is nevertheless an essential element in
the screen being used. The logic structure used in this evaluation is reasonable, but difficulties are experi-
enced in practice. Note that although uncertainty in observational or parametric data can be propagated
when determining Cg, (max), there is no consistent method applied to represent uncertainty in expert
judgment. However, the relative quality of sensors or calculational models represents the major sources
of uncertainty that must be evaluated by the experts during the screening process. Second, it can be seen
that in this logic structure, the expert judgment and the value of the threshold for the criterion, Cg (t) =
0.25 LFL, are not independent. That is, the decision in the ad hoc step is affected by the conservatism of
the criterion.* This makes it extremely difficult to provide best-estimate/degree-of-conservatism com-
parisons. Finally, with the structure discussed here, it is difficult to ensure that the screening is consis-
tent, and this poses problems during review.

2.3. Overview of an Approximate-Reasoning Based Screening Method

The considerations above suggest that the design and implementation of a new screening method
should be based on a formalism that is both robust and adaptable and in which all of the necessary
judgments are defined explicitly. The theory of approximate reasoning provides such a formalism.

2.3.1. Information, Evidence, and Uncertainty. The general structure underlying the AR method
developed in this report is shown in Fig. 2-2. We begin with some universe of information about a tank
to be screened. The universe consists of both qualitative and quantitative data. This information is not
necessarily in a form in which it is directly useful, and therefore, some processing of the data is required.
We denote this processed data as a body of evidence, and only elements within it will be considered in
the screening process. Elements of evidence must be related to each other in some meaningful manner.
This is done by way of formal structures with logical operations relating the evidence to produce a series
of forward-chaining inferences. The output from the logic structure is a description of the system called a
“state vector.”

The state vector is a concise description of a system, in this case, the tank undergoing the screening.
The elements of a state vector are always assumed to include some component of uncertainty that reflects
imprecision or ambiguity in the knowledge of the system state. Finally, the system state vector is used in a
decision model where some definite statement about the system is made. Note that the level of abstraction
increases as we move through the process. We now consider each step in this sequence in more detail.

“In this structure, the expert considers the validity of the calculated Cg, (max) in relation to the value of
Cy, (t). Thus, the judgment incorporates aspects of uncertainty and degree of conservatism
simultaneously in a way that is impossible to quantify.
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Fig. 2-2. Overall structure for the AR model.

The relationship between the universe of information and a body of evidence is shown in Fig. 2-3.
The primary data consist of what can be considered “raw” information about the tank. These include gas
concentration measurements, waste characteristics, and level sensor data. Information processing is
needed to make these data useful. Processing involves phenomenological models, detailed numerical
simulation, and specific expert judgment. These operations place a piece of information in a useful
context. Information of this sort forms a body of evidence.

4y, J '
4. 6/80

1
'UOQL/ﬁdS

Fig. 2-3. Conceptual relationship between the universé of information and a body of evidence for the
FGWL problem. :
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In an AR model, the elements of evidence are handled as linguistic variables; that is, natural language
descriptors are used. For example, we can characterize the temperature in a room as “too cold,” “comfor-
table,” or “too hot” without actually measuring the temperature. The descriptors are used to define sets
in which the variable of interest, in this case the temperature in the room, may belong. The sets used in
AR are fuzzy—a variable may belong to sets that traditionally might be considered to be mutually
exclusive.

For our example, the temperature could be said to belong to all the fuzzy sets {Too Cold}, {Comfor-
table}, and {Too Hot}. Membership in a fuzzy set can vary between 0 and 1, with 1 implying full member-
ship and 0 implying nonmembership. For quantitative elements of evidence, the degree of membership
(DOM) in a set is assigned using membership functions. The numerical value of the degree of member-

ship in a set §; is determined by Y(x, 5) = l(x,S)), where LL(x,S) is the actual membership function. Possi-
ble membership functions for the room temperature are shown in Fig. 2-4. If the temperature in the room
is 70°F, this results in DOMs of 0.5 in {Too Cold} and {Too Hot} and a DOM of 1.0 in {Comfortable}. We

denote the three DOMs in these sets by the vector YT = {0.5,1,0.5}; membership in {Comfortable}, for

example, is (T, Comfortable) = 1.0. It is important to note that a small change in temperature will have a
similarly small effect on the degrees of membership in the sets.

The more traditional approach is to use threshold values to define the sets. With this approach, a
particular temperature can only belong to one set. Such sets are referred to as crisp, and a small change
in temperature could completely change the set to which it belongs. So far, we have been dealing with
quantitative measures for temperature. However, we might chose instead to use our subjective judgment
to qualitatively define the room temperature. The degrees of membership in the sets then can be assigned
directly. For example, the judgment “a little too cold” could be converted directly to a DOM of {0.3,0.7,0}
without explicit membership functions. Note that when using either quantitative or qualitative tempera-
ture measures, the use of fuzzy sets allows for ambiguity in classification of the temperature.

An element of information can be either quantitative or qualitative, but it is important to note that in
either case, it is almost inevitably uncertain. If an element is defined numerically, it is treated as a classic
random variable characterized by a probability density function. Definition of the parameters in the
density function then characterizes the uncertainty. A qualitative element is always considered to be a
linguistic variable. These also can be random variables.

:_g' Too Cold Comfortable Too Hot
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Fig. 2-4. Membership functions for fuzzy sets used to describe room temperature.




The total uncertainty associated with an element of evidence is composed of two components—
aleatory and epistemic—as shown in Fig. 2-5. The aleatory component represents the inherent variability
in a parameter. Processes such as radioactive decay and turbulence exhibit aleatory uncertainty. They
also are commonly referred to as stochastic processes. The epistemic component represents state-of-
knowledge uncertainty. For example, the assumptions and approximations made in a model induce
epistemic uncertainty in the results. That is, there is some doubt about how well the model represents
physical reality. It is important to note that epistemic uncertainty is often greater than the aleatory
component in many problems.

2.3.2. Organizing Evidence Using a Logic Structure. The connection between the elements in the
body of evidence and a logic structure is shown in Fig. 2-6. The logic structure defines a set of relation-
ships between the elements of evidence. The nature of the individual branch junctions depends on the
particular type of relation used. A relation is a general function that maps multiple inputs into a single
output. In this report, we consider only binary relations. Many different types of relations, both numeri-
cal and logical, are possible. However, in an AR model, the only relation used is formal logical implicat-
ion. We refer to this as an implication junction. The implications are of the form “If A and B then C,” or
“A and B implies C,” written symbolically as

(ArB)y—>C.
For example,

Implication 1: If the barometric pressure correlation is good and the unexplained level change is large,
then the presence of a significant quantity of retained gas is quite likely.

Element of Evidence :
Descriptor + Uncertainty

Total Uncertainty -}
Epistemic (State of Knowledge) Portion
Aleatory (Inherent) Portion

Fig. 2-5. Relationship between components of uncertainty for an element of evidence.
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Fig. 2-6. Relationship between a body of evidence and the associated inductive logic structure.

The pressure correlation and the level change in this example are linguistic variables and are the ante-
cedents of the implication. The conclusion variable is “the presence of a significant quantity of retained
gas.” We will discuss why this particular consequent is used in Sec. 3. As noted earlier, linguistic vari-
ables are allowed to have membership in as many fuzzy sets as are needed so that a reasonably complete
description of the quantity is possible. For example, the pressure correlation C,, might have membership
in the fuzzy sets {Poor}, {Fair}, and {Good}, and the level change Ah, defined on the universe of discourse
{{Small}, {Medium}, {Large}}, written as

Cpe {{Poor}, {Fair}{Good}}
Ah € {{Small}, {Medium}{Large}}

It can be seen that in this case, we need 3 x 3 = 9 different implications to cover all the possible combina-
tions of the two antecedents. We refer to this set of implications as a “rule base.” The complete form of
the inference rule is

“(Ais Ajand Bis B)) and (i A;j and Bl imply Cy) then Ck”
or

[(A; A Bj) A( (Aj A B)=> CL)], Ck -

This statement is a special logical construct known as the modus ponens tautology and is the basic form of
rule base used in all AR models. Implication 1 above is of exactly this form.

Statements such as those given above are evaluated algorithmically in an AR model. The effects of
ambiguity and imprecision are incorporated by the use of fuzzy sets, and the expert judgment required is
represented in a series of forward-chaining modus ponens rule bases. This allows a computer-based
implementation.

2.4. Nlustration of Approximate-Reasoning Based Flammable Gas Watch List Screening

To illustrate the operation of an AR model, we will use a short excerpt from the complete FGWL
screening algorithm to be described in Sec. 3. The absolute level of the waste in a tank can provide
information on the amount of retained gas under the correct circumstances. A substantial difference
between the measured waste level and the waste level predicted by the fill/ transfer history of the tank
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corrected for evaporation can be evidence of gas retention in the waste. The greater the unexplained level
change, Ah, the greater the potential volume of trapped gas. This model is conceptually simple, but its
application can be difficult. All waste transfers and other losses from the tank, including evaporation,
must be accounted for. Given the state of the historical records, the large uncertainty in level measure-
ments for some sensors, and the possibility of slow leaks or intrusions, this can rapidly become complex,
and in some cases, the results to be inferred from it are problematic.

Hopkins (1994) defines the effective long-term level change to be attributed to retained gas as”
Ah =1h' - hg; + Ahg; + Ahg = Ahy + Ahg; + Ahg, (2-1)
where

h’ = the recently measured level corrected for transfers since 1981,
hy, = the level measured in 1981 (used as a datum),

Ahg, = the estimated gas retention level change before the 1981 measurement, and

Ah; = a correction to the level to account for evaporation after 1981.

The difference between the first two terms in Eq. (2-1) is the measured level change denoted by Ahy. The
value of Ah as a predictor of retained gas depends to a large degree on how large the correction terms Ahg
and Ahy, are relative to Ahy;. If these correction terms are large, it is reasonable to discount the importance
of this model prediction. This is exactly the type of expert judgment that an AR model is designed to
emulate.

We wish to draw an inference in this example about the likelihood of a significant quantity of

retained gas. To determine this likelihood, L,;,, both the unexplained level change, Ah, and the quality of
the data used to calculate this parameter should be evaluated. The logic structure for this evaluation is
shown in Fig. 2-7. The three inputs are the long-term level change and two parameters, Mg and Mg, used

to measure the effect of correction terms on the estimate for Ah. These two parameters act as antecedents
to allow us to infer a single quality parameter, Q. Q and the level change, Ah, are then in turn the

antecedents used to infer a consequent likelihood of a significant quantity of retained gas, L,;. This
chaining of inferences is characteristic of AR models.

Pre-81 Level
Correction Ratio, Mg1

Evaporation Correction
Ratio, Mg Lat

Long-term Level
Change, Ah

Fig. 2-7. Logic structure for determination of long-term level change predictor likelihood, L,;.

*Other factors that may affect Ah have been neglected here.
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The relative importance of Ah;. and Ahg, in determining Ah is represented by the parameters Mg, and
Mg, which are defined as

Mg, = |Abg / Ahy - (2-2)
and
Mg = |Ahg / AhM (2-3)

The larger the absolute value of these ratios, the larger is the influence of the poorly known parameters,
Ahg and Ah,,.

To proceed further, it is necessary to first define the fuzzy sets to which the two correction terms may
belong. In this case, we assert that both terms may belong to (that is, have membership in) the same three
sets: {Mg,Mg,} € {{Small}, {Medium} {Large}}. In practice, the number of sets and the actual set linguistics
are developed in conjunction with subject matter experts. The two correction terms initially will be

expressed numerically, so we need to develop membership functions to assign the DOM in each set for a
particular value of the correction term. One possible set of membership functions is shown in Fig. 2-8.

If Mg = 3 (that is, the evaporation correction is three times larger than the measured level change),
then M is said to have DOMs, ¥, in the three fuzzy sets of y; = {0,.5,.5}. That is, the DOM in {Medium} is

Y(Mg, Medium) = 0.5. Similarly, a value of Mg = 0.25 would imply DOMs of ¥ = {.75,.25,0}. In natural
language, this might be expressed as “the evaporation correction ratio is fairly small.”

Given the antecedents Mg and My, and the fuzzy sets to which they belong, we are prepared to define
a set of expert judgments that relate them to the quality, Q, of the long-term level change prediction. We
chose to use the fuzzy sets {{Poor}, {Fair} and {Good}} to describe Q, Q € {{Poor}, {Fair} and {Good}}. Itis
not necessary to define membership functions for Q because it is not itself an element of evidence and
exists only as an internal linguistic variable. There are nine rules in the modus ponens rule base forQ;
these are shown in Table 2-4. The shaded box corresponds to the rule:

“IF the evaporation correction ratio is medium AND the pre-1981 level change correction
ratio is medium THEN the quality of the unexplained level change model is fair”.

S M L

1.07

Level Ratios M81 and Mg

Fig. 2-8. Mg, and M ratio membership functions.




Table 2-4
Modus Ponens Rule Base for My, and M, to Determine Q

Q Rules

ad vl Ra] g

Referring to Fig. 2-7, the next inference is made about L, using Q and the value of Ah itself. Again
we define the fuzzy sets in which Ah may have membership: Ah € {{Very Small},{Quite Small},
{Moderate}, {Quite Large}, {Very Large}} and the associated membership functions shown in Fig. 2-9. The

likelihood of retained gas, L, is a linguistic variable that we choose to characterize by its membership in
a series of sets that describe degree of likelihood: '

Ly, € {{Very Unlikely},{Quite Unlikely},{Unresolved},{Quite Likely},{Very Likely}].

The use of the hedges “quite” and “very” is consistent with the expressions commonly used by subject
matter experts. It must be emphasized that “Unresolved” does not mean “Equally Likely” but rather “No

definite statement can (or should) be made.” The rule base for inferring L, is given in Table 2-5. In par-

ticular, note the bottom row in the rule base. If the Quality is poor, then L, always evaluates to “Unre-
solved.” This row of the rule base deals with the situation in which the quality of the data does not allow
a strong conclusion to be reached with this model.

VS (03] M a VL
1.07

¥ >
0 5 10 15 20

Long-term Level Change, Ah [in]

Fig. 2-9. Long-term level change Ah membership functions.

Table 2-5
Modus Ponens Rule Base for Q and A, to Determine L,,,

VU 'QU
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Consider now a numerical example using this set of linguistic variables, membership functions, and
rule bases. We will assume that the following differential level data are available.

A}“M = 2.8 in-
Ahg, =14in.
AH,=83in.

These correspond to Mg, = 0.5, Mg = 3 and Ah = 12.5 in. The DOM s for Mg, and Mg from Fig. 2-8 are ¥y, =

{.5,.5,.0} and ¥; = {0,.5,.5}, respectively. This means that four of the rules in Table 2-4 will be operative—
the lower two rows by the two rightmost columns. We say that these four rules “fire.” The firing of
modus ponens rule bases with fuzzy antecedents is determined using the “min-max” rule. The details of
the operation of this rule are discussed in Appendix A, which gives the details of the various operations
associated with AR theory. For Q, application of the rule yields li5 = {.5,.5,0}; that is, the quality has equal
membership in the {Poor} and {Fair} sets. We could express this as “the quality is poor to fair,” which
reflects the judgment incorporated into the rule base that if either ratio is large, then the quality cannot be
good. The DOMs for Ah = 12.5 in. are ¥, = {0,0,.5,.5,0}. That is, the level change has non-zero member-
ship only in {Moderate} and {Quite Large}. Evaluation of the rule base for L, using Q and Ah as ante-
cedents with the min-max operator yields Y; o, = {0,0,.5,0,0}. With this set of data, there is only non-zero

membership for L, in the likelihood fuzzy set {Unresolved}, so the conclusion is that the likelihood of a
significant quantity of retained gas using the long-term level change is “unresolved.” This agrees with
the premise stated earlier that if correction terms are large, then the inference based on the long-term
level change must be weak. Figure 2-10 shows how DOMs are propagated as the rule bases act on the
elements of evidence.

The fuzzy set membership vector ¥ ,, = {0,0,.5,0,0} describes the gas retention likelihood state of the
tank using an evaluation based on the long-term level change. We recognize this as a state vector, and in

this case, its interpretation is straightforward. However, consider the vector ¥, ,, = {0,0,.5,.8,.75}. What
does this mean in terms of the likelihood of retained gas and how can this be compared with a screening

Pre-81 Level i._S—,_.S,O}

Correction Ratio, Mg1
Q
{.5,.5,0}
Evaporation Correction |
Ratio, Mg R
{0,.5,.5} A
{0,0,.5,0,0}
Long-term Level
Change, Ah
{0,0,.5,.5,0}

Fig. 2-10. Propagation of DOMs for example evaluation.




criterion? The answer to both of these questions requires that we convert the likelihood fuzzy set mem-
bership vector to a single measure. This is referred to as “defuzzification.” In Sec. 3, we will discuss
several techniques for defuzzification. One approach is to take the maximum DOM as the output:

D(YLARW) = max[YLAh] -
For the second example, this is Dy 4y = 0.8. Further, this value is associated with the set {Quite Likely}.

Therefore, the output of the logic module is “quite likely.” We can now define a screening criterion that
uses the same natural language expressions.

If the evaluation output is contained within {Very Unlikely, Quite Unlikely}, the tank passes the
screening.

If the evaluation output is contained within {Very Likely, Quite Likely}, the tank fails the screening.

If the evaluation output is contained within {Unresolved}, there is insufficient information to classify
the tank.

When these criteria are applied to the two membership vectors above, the screening results are %y, ,,, =

{0,0,.5,0,0} — “insufficient information to classify the tank” and Y ,, = {0,0,.5,.8,.75} — “the tank fails the
screen.” Of course, the three primary inputs to this short AR model, Ahy;, Ahg, and Ahg,, all have uncer-
tainty associated with them. In the case of Ahy, the dispersion may be assigned primarily to various
forms of measurement error. The uncertainty in Ah; and Ahy, is probably mainly epistemic. As a conse-
quence, the likelihood vector and the screening result are also random variables. We will discuss how
this uncertainty is taken into account at the conclusion of Sec. 3, where the detailed AR model for flam-
mable gas screening is developed using the techniques illustrated in this example. ‘




3.0. FLAMMABLE GAS WATCH LIST SCREENING MODEL DEVELOPMENT

In this section, we develop a complete AR model for FGWL screening. This model is intended to
illustrate the concepts used in the AR method and to provide a credible basis for testing the basxc
algorithm. The following major points will be covered.

¢ Specification of the scope of the model and the form in which the result of the evaluation is to be
expressed.

¢ Presentation of the inductive logic structure for screening. This defines the relationship between
the data, models, and judgments used and the order in which the inferences are to be made.

e Definition of linguistic variables for the elements of evidence. Here we define the fuzzy sets used
to describe each element and present illustrative membership functions needed to transform input
parameters into the appropriate set membership.

¢ Development of the implication rule bases that prescribe the inferences to be drawn at each branch
point in the logic tree.

e Explanation of the methods used to express the uncertainty associated with the evaluation.

Each of these points addresses an essential aspect of the AR methodology and its application to the
FGWL screening process. The discussion of the linguistic variables and the implication rule bases are
ordered according to the primary evaluation modules in the logic structure.

This section describes the details of the pilot AR model in considerable depth. Readers uninterested
in this amount of detail can gain a reasonable understanding of how the AR approach has been adapted
to the FGWL screening problem by reading Secs. 3.1 and 3.2, the introduction to Secs. 3.3 and 3.3.1, the
introductions to Secs. 3.4 and 3.5, and all of Secs. 3.5 through 3.8.

3.1. Specification of the Screening Evaluation Output

An important consideration in the initial development of an AR model is its scope. The scope
determines the size of the required logic structure and is a major determinant in the amount of work
associated with developing rule bases and membership functions. To illustrate the AR approach to
FGWL screening, we chose to restrict ourselves to an evaluation of retained gas. We had two reasons for
this decision. First, the body of evidence concerning gas generation and retention appears to be generally
more mature than that associated with other aspects of flammable gas phenomenology. Second, the body
of evidence for retention provides a diverse set of data and models that is sufficient to illustrate the ability
of an AR model to combine quantitative and qualitative information and make sophisticated judgments
about model validity and the resolution of conflicting results.

A second important consideration in designing an AR model is determining the form in which the
final output of the AR model is to be expressed. This is equivalent to specifying the format in which a
subject matter expert is expected to state his conclusions. Ideally, the natural language expressions
associated with the output of the model are developed in conjunction with the experts used in building it.
The linguistic variable chosen for the final output in the pilot model was “likelihood of a significant
quantity of retained gas.” The adjective “significant” means that there is sufficient gas retention so that
concerns in terms of the Wyden amendment exist. We express the output likelihood, hereafter referred to
as the aggregate likelihood or Ly, with the following set of descriptors: “Extremely Unlikely,, “Very
Unlikely,” “Quite Unlikely,” “Unresolved,” “Quite Likely,” “Very Likely,” and Extremely Likely.” We
will show how these descriptors are used directly in AR. The hedges “extremely,” “very,” and “quite”
are intended to provide sufficient resolution to allow meaningful distinctions to be made. The set
{Unresolved} is used to allow for expression of evaluations where the results are inconclusive. This is
equivalent to an expert saying “I don’t know” or “The data are inconclusive.” We use the expression
“likelihood” in the sense that it “supplies a natural order of preference among the possibilities under
consideration” (Thomas 1995). That is, something that is said to be “very likely”is understood to have a
more realistic chance of happening or to occur more frequently than something that is “extremely
unlikely.” However, it must be emphasized that the likelihood linguistic variable is not to be confused

3-1



with quantitative probability nor do we intend our use of likelihood to be associated directly with the
likelihood function of probability theory.

3.2. Overview of the Inductive Logic Structure

The parameters used in the algorithm are grouped into three general classes: predictors, enablers,
and indicators. These three classes correspond to the primary modules in the inductive logic tree as
shown in Fig. 3-1. Each class of parameters provides a distinct judgment concerning the likelihood of a
significant quantity of retained gas. We refer to these likelihoods as Ly, Lg, and L;, where the subscripts
denote the predictor, enabler, and indicator parameter groups. Each of these three linguistic variables
represents an independent evaluation of the likelihood for a significant quantity of retained gas based on
a particular combination of logical inferences. Predictor and enabler likelihoods and their subsidiary
likelihoods are defined in terms of the fuzzy sets described in Sec. 2.4:

{{Very Unlikely}, {Quite Unlikely},{Unresolved}, {Quite Likely} ,{Very Likely}} .

We refer to this set of sets as the universe of discourse and require that each of these linguistic variables
have a non-zero DOM in at least one of the sets in the universe of discourse. The set theoretic shorthand
for this is

Ly € {{Very Unlikely},{Quite Unlikely},{Unresolved},{Quite Likely}, {Very Likely}} .
The corresponding sets for L, are

L;e {{Extremely Unlikely},{Unresolved},{Extremely Likely}} .
The use of sets with the hedge “extremely” for L, is intended to reflect the fact that indicators can be
especially clear elements of evidence, and therefore, the associated inferences may be particularly strong.
The deletion of the “quite” and “very” hedges incorporates the companion decision to only value indica-
tor evidence if it is particularly unambiguous. This is done for illustrative purposes, and for the tests

discussed in Sec. 5, all inputs to the indicator module were chosen to yield only membership in
{Unresolved} forL; .

Predictor Likelihood, Lp —

LPE

Aggregate FGWL
Enabler Likelihood, L — Likelihood, LF

Indicator Likelihood, L|

Fig. 3-1. Logic for combining likelihood judgments based on predictor, enabler, and indicator
parameter classes.



The three major likelihood judgments are combined according to the logic structure in Fig. 3-1. The
inputs to this structure are actually the final outputs of more involved evaluations to be discussed in
detail shortly. The output of the final rule, Ly, represents the expert judgment for a tank based on all
three classes of parameters. The fuzzy sets to which L can belong are the union of the universes of
discourse for Lp, Lz and Ly,

LF € {{Extremely Unlikely},{Very Unlikely},{Quite Unlikely}, {Unresolved},{Quite Likely},
{Very Likely], {Extremely Likely}}.

The fuzzy sets for each of these likelihoods, their abbreviations, and the rule bases in which they appear
are given in Table 3-1 for reference.

Predictor parameters include the barometric pressure-level correlation and the long-term level
change; the retained gas sampler and voidmeter sensors are not considered in the current illustrative AR
logic structure. Both of the parameters considered here use a measurement to provide an estimate of the
amount of gas trapped in the waste. Enablers are sets of parameters that, when properly combined, pro-
vide a basis for estimating the gas generation rate and the gas retention effectiveness for a tank. Gas
indicators are parameters that can be used to infer the existence of a GRE. Positive indicators are direct
measurements of an unambiguous nature, such as a dome-space flammable gas concentration measure-
ment. The absence of such positive indicators does not prove that a tank is a nonflammable gas tank.
Similarly, a negative indicator has a threshold value that indicates conclusively that significant gas reten-
tion is not possible in the tank because of some distinct combination of physical characteristics of the
waste and tank. We use the WHC “Quick Screen” criterion as an example of a negative indicator.

Table 3-1
Summary of Linguistic Variables for Primary Logic Modules

Parameter Symbol Universe of Set Rule Base
Discourse Abbreviations {| Tables
Predictor Lp {{Very Unlikely}, {VU,QU, U, 3-12
Likelihood {Quite Unlikely}, QL, VL} 3-35
{Unresolved}, {Quite
Likely}, {Very Likely}
Enabler Lg {{Very Unlikely}, VU, QU, U, 3-23
Likelihood {Quite Unlikely}, QL, VL} 3-35
{Unresolved}, {Quite
Likely}, {Very Likely}}
Indicator L1 {{Extremely Unlikely}, 3-34
Likelihood {Unresolved}, {EU, U, EL} 3-36
{Extremely Likely}}
{{Extremely Unlikely}, 3-36
Aggregate Lg Very Unlikely}, {Quite | {EU, VU, QU,
FGWL Unlikely}, U, QL, VL, EL}
Likelihood {Unresolved]}, {Quite
Likely}, {Very Likely},
- {Extremely Likely}}




Figure 3-2 shows the complete inductive logic structure for the FGWL screening model. The major
submodules correspond to the three primary likelihoods, Ly, Lg, and L;.. A detailed discussion of the
inference module for each of these likelihoods is given below. We will return to the process used in their
aggregation to infer L; in Sec. 3.6. o
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Fig. 3-2(a). Complete logic structure for evaluating the likelihood of a significant quantity of retained gas.
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3.3. Predictor Likelihood Logic Module
Figure 3-3 shows the complete logic structure used to calculate the predictor likelihood. The two

basic models used are the correlation between barometric pressure and waste level fluctuations (Whitney
1995) and the long-term level change discussed earlier. Other sensors that provide a prediction of
retained gas volume also could be included.

Negative Slope
Probability, Pgs
Prp
Linear Regression LeRs FIC Barometric
Coefiicient, R2¢ Pressure
Slope Likelihood, L¢
Parameter, St
Interval
Measure, If
Negative Siope
Probability, PSe Lte
Prp
Linear R i Lrrs
egression ENRAF Barometric
Coefficient, R2 o Pressure
Stope Likelihood, Lo
Parameter, Se
Interval Aggregate
Measure, lg Barometric
Negative Slope P.res.s.:re
Probability, Pgp Likelihood, Lg
Prp
Lp
Linear Regression RS g:,%,:;‘:;
Coefiicient, R2, Pressure
Slope Likelihood, Lm
Parameter, Sm
Intervai
Measure, Im
Negative Siope
Probability, Pgp, Lmn
PRP Predictor
Likelihood, Lp
. _ LPRS  Neutron Log 1
Linear Regression Barometric
Coefficient, R2, Pressure
Slope Likelihood, Ln Continued
Parameter, Sn on Figure 3.1¢
interval
Measure, I,
Pre-81 Level .
Correction Ratio, Mg+
) Q
! . Long-term
Evapo:’:t:gn Correction Level Change Predictor
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Long-term Level
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Fig. 3-3. Predictor likelihood logic module.
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3.3.1. Surface Level—Barometric Pressure Logic Submodule. The barometric pressure like-
lihood, Ly, is determined from an evaluation of the available evidence on the correlation between fluc-
tuations in barometric pressure and the waste level. The level fluctuation is assumed to be related to the
pressure fluctuation by '

dL=SdP e

where dL is the level change, dP is the change in pressure, and S is the slope of a linear least-squares fit of
the level and pressure data. Because an increase in pressure leads to a reduction in gas volume (at con-
stant temperature) and hence a drop in level, the slope, S, is expected to be negative when gas is retained.
The value for S is obtained by a linear least-squares fit of the (L,P) data. The basic assumption in this
model is that the more negative the slope, the greater the likelihood of retained gas in the waste. There
are four independent ways to calculate the correlation using the available sensors: FIC, ENRAF, manual
tape, and neutron log level instruments. All four sensors are not installed in every tank. The logic mod-
ule for each instrument is the same as shown in Fig. 34." The parameters in Fig. 3-4 are the same for each
instrument, and the subscript i can take on the values f, e, m, and n for FIC (f), ENRAF (e), manual tape
(m), and neutron log (n), respectively.

Inputs to this module are the following,.

Negative Slope Fraction Probability, Ps . If changes in barometric pressure and surface or interstitial
liquid level are uncorrelated, then we would expect that the sign of the derivative, dL/dP, would
be equally likely to be positive or negative. P; is the probability of getting the observed fraction
of negative correlation events assuming that no correlation exists. If the L and P values are
uncorrelated, the probability that S is less than zero is 0.5 for each interval. Then, using the
binomial distribution, we may calculate the probability that there are N negatively correlated
intervals in I total intervals as

Pe=1! / NI / (I-N)! *0.5! (3-2)

A value of Ps = 0.05 is used by Whitney as a flag for retained gas. Note that if I is very small, Ps
will be relatively large even if N is close to I. In this case, it is not possible to draw a strong
inference from Ps. For large I, N must be a significantly larger fraction of I than I/2 for Ps to be
small. We define Ps on the universe of discourse, {{Low), {Medium}, {High}}, (Ps e {L,M,H]}).

Negative Siope
Probability, Pg
PRp
Linear Regression
Coefficient, R2 LPRs
Instrument Barometric
Pressure
Slope — Liketihood, L

Parameter, S

Interval
Measure, |

Fig. 3-4. Barometric pressure logic submodule for individual sensor.

*An alternative logic structure would relate S and R? first.
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Linear regression coefficient, R* If the level and pressure fluctuations vary exactly in a simple linear
relationship, then the regression coefficient will be 1.0. Similarly, if there is no correlation, R* =
0. Thus, the closer R? is to 1.0, the more evidence there is for the assumed linear behavior con-
sistent with gas retention. The universe of discourse for the regression coefficient is {{Poor},
{Fair}, Good} (R* € {P,F,G}).

Slope coefficient, S . This is the value obtained from the best fit to the relationship dL =S dp. By mak-
ing a number of assumptions, the value of S also can be used to estimate a volume of gas that, if
it were to act as a simple compressible region, would produce the observed effect. This is the
basis for the previously mentioned predictor capability associated with an inference based on
the barometric pressure correlation. A large negative slope in this model implies a large amount
of retained gas.” The universe of discourse for S is {{Positive}, {Slightly Negative}, {Very Nega-
tive}}, ((S € {P,SN,VN}).

Number of intervals, I. This is the number of intervals used to calculate Ps. The value of I depends on
the historical data base as well as the results of an algorithm used to remove periods where the
signals’ behavior is unsuitable for regression analysis. Iis defined on the universe of discourse
{{Low}, {Medium}, High}, I € {L,M,H}).

The universe of discourse used to express each of these parameters as a linguistic variable is
summarized in Table 3-2 along with references to the inference rule bases in which each input
element appears. Membership functions for each of these parameters are shown in Fig. 3-5. The
regression coefficient and slope parameter are random variables; the other two quantities are
constants. Note that a different membership function is used for the ENRAF interval count. This
allows for the fact that this instrument has been fielded for only a relatively short period of time.
However, the correlation calculated with this level sensor is considered of high quality even
though the actual number of intervals is usually small relative to the other sensors.

Implication Rule Bases for L. An inference rule base is constructed for each implication junction in
Fig. 3-4. The basic principle here is that the likelihood of gas is greater when P, R?, and S are all
in agreement and that the weight given to this judgment depends on the number of intervals on
which the statistics are based. The first step in the level-pressure screening parameter process

Table 3-2
Summary of Input Elements for individual Sensor Barometric Pressure Logic

Set
Abbreviations

Parameter Universe of Discourse

Negative slope fraction

probability

Regression coefficient R? {{Poor},{Fair},{Good}} {P,F,G} 3-3 3.5

Slope S {{Positive},{Slightly {P,SN,VN} 34 35

Negative},{Very Negative}}

" FIC, manual tape and I {{Low},{Medium},{High}} {LM,H} 3-5 35
neufron log interval count

“ ENRAF interval count I

{{Low},{Medium},{High}} {LM,H}

{{Low},{Mediumj,{High}} {L,M,H]

"In his report, Whitney did not recommend computing gas volumes from the slope values.

39




Fig. 3-5 (Quark Figure)
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infers a gas probability parameter denoted by Pgp from antecedents Ps and R%. The rule base for
this implication set is shown in Table 3-3. This is classified as a conflation rule base because we
are drawing an inference from two dissimilar quantities. There are several different types of
conflation rules. The various classes of implication rule bases are discussed in Appendix B. The
universe of discourse for Pgp is the same as for P, Pgp € {{Low}, {Medium}, {High}}. However, for
Prp, membership in {High} is a positive indication of retained gas. In this rule, we follow the
expert consensus that P; is a strong indicator of retained gas. A difference in the analysis here is
that the regression coefficient R? is also considered to be an important measure of the probability
for retained gas. When the linear correlation is considered good, then low values of Ps are con-
firmed and the judgment for Pg, is membership in {High}. Similarly, the combination [P, €
{High}, R? € {Poor}] confirms a lack of retained gas and leads to the judgment Py € {Low}. A fair
correlation is indicative of ambiguity and moves the gas likelihood toward the medium set. Note
that no membership functions have been defined for Pgp. It exists as a pure linguistic variable.
Membership functions are only required for the numerical elements of evidence used as inputs to

the logic structure.
Table 3-3
Conflation Rule Base for P and R? to Generate Py,
Pep; Rules

H L M M

Py M L M H

L M H H

P F G

R

After Prp is inferred, it is combined with the slope parameter S calculated by Whitney (1995) to gener-
ate an instrument-dependent gas likelihcod, Lpgs. The rule base for combining Pp, and S to infer Lpgs is
shown in Table 3-4. The rule base in our model is symmetrical, meaning that equal weight is given to
both antecedents. The most important property of this rule is transformation. That is, it transforms the
inputs into an output that is different from either. Here the likelihood sets associated with the conse-
quent use linguistic descriptors associated with likelihood. This transformation occurs in each major
branch of the logic structure and represents the transition from diverse input data types to likelihood
measures. The universe of discourse for Lpgg is

{{Very Unlikely},{Quite Unlikely}, {Unresolved},{Quite Likely}, {Very Likely}}

and is used to represent all of the likelihood linguistic variables used in the predictor logic module.

Table 3-4
Conflation Rule Base for Py, And S, to generate Lpgg
Lypgs; Rules
H U QL VL
Pre; M QU U QL
L VU QU U
SN VN
5
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A gas likelihood for each instrument, L,, is constructed by modifying Lpgg;, by the number of intervals,
L. Recall that1 is defined on the universe Ie {Low, Medium, High}. The implication rule base for Lpgs
and I is shown in Table 3-5. The output from the rule is the individual instrument gas likelihood, symbol-
ized by L,, and represents the likelihood of significant retained gas in the tank based on the level/pres-
sure data for instrument i. This rule is structured so that if the number of intervals has membership in
either {Medium} or {Low}, the judgment for L, is relaxed toward {Unresolved}. This is consistent with a
best-estimate judgment. Note that the judgment about the importance of the number of intervals associ-
ated with the ENRAF was incorporated into its membership function rather than by developing a sepa-
rate rule base. This illustrates the way that decisions about how to express an input linguistically can be
separated from the development of implications associated with that variable.

Table 3-5
Conflation Rule Base for |, and L to Generate L,
L, Rules

H QU U QL VL

L M QU U U U QL
L U U U U U

vu QU U QL VL

Leesi

The next relationship in the inference chain is the combination of the individual sensor judgments, L,
through a convolution rule to infer Ly, the aggregate barometric pressure likelihood estimate as shown in
Fig 3-6. This is referred to as a convolution rule base because it combines two likelihood variables to infer
a consequent likelihood. Here the results from the FIC and ENRAF are combined, as are the results of the
manual tape (MT) and neutron log (NL). This approach is taken to account for instrument quality. In our
pilot model, the FIC and ENRAF are considered to have equal quality in spite of the lower number of
intervals for the ENRAF in this context, so their likelihoods are combined symmetrically to produce the
likelihood L, as shown in Table 3-6. An important consideration is that not all sensors are available for
each tank. Missing sensors are accounted for by giving them full membership in {Unresolved} when
applying the convolution rules.

FIC Likelihood, Lt —

Lte
Aggregate Barometric
ENRAF Likelihood, | Uk’;:iehzs:c;el_
Le — B
Manual Tape
Likelihood, Ly = |
Lmn

Neutron Log
Liketihood, Lp,

Fig. 3-6. Logic structure for convolution of individual barometric pressure correlation likelihoods.




Table 3-6
Convolution Rule Base for L; and L, to generate L,

L Rules

VL U U VL VL VL

QL U U QL QL VL

L¢ U A48 QU U QL VL
QU VU QU QU U U

vU VU vU VU U U

vU QU U QL VL

L,

The MT and NL instruments are judged to have a lower inherent quality. Thus, in the rule base for them
(Table 3-7), the universe of discourse for L,,, is restricted to {{Quite Unlikely}, {Unresolved}, {Quite Likely}}.

Table 3-7
Convolution Rule Base for L, and L, to Generate L,
Lo, Rules
VL U U QL QL QL
L U U U QL QL
L, U QU U U U QL
QU QU QU U U U
vU QU QU QU U U
vU QU U QL VL
L,

The instrument pair likelihoods, L, and Ly, are combined to infer a final barometric pressure
correlation likelihood, Lp. In this convolution rule base, the relative instrument qualities for the two pairs
of instruments are taken into consideration. The rule base for this step is shown in Table 3-8. This
represents one possible set of judgments about the relative quality of the different instruments. The mn
instrument inputs can only modify the fe instrument inputs by relatively small amounts in this rule base
because the quality of the mn pair is judged to be considerably less than that of the fe pair. Thus, the gas
likelihood is determined principally by the FIC and ENRAF inputs if they are available. If they are not
available, then the MT and NL can only make weaker predictions. This is the final inference in the baro-
metric pressure logic submodule, and its output, Ly, is now available for use in determining the overall

predictor likelihood Lp.*
Table 3-8
Convolution Rule Base for L, and L,,,, to Generate L,
B L Rules

QL QU QU QL VL VL

Lon U vU QU U QL VL
QU vU VU U QL QL

vu QuU U QL VL

Lfe

“There is an implicit assumption made here that each level sensor signal is correlated only with the pres-
sure change. However, one might expect a temporal correlation between the various level signals in the
presence of retained gas. The implication of additional correlation observations could be implemented in
a manner similar to that discussed in Sec. 3.4 )
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3.3.2. Long-Term Level Change Logic Submodule. This logic submodule was discussed in Sec. 2.
The discussion here provides some additional details concerning L,y and is included for completeness.
The absolute level of the waste in a tank can provide information on the amount of retained gas under the
correct circumstances and hence is classified as a gas predictor. A substantial difference between the
measured waste level and the waste level predicted by the fill/transfer history of the tank corrected for
evaporation can be explained by gas retention in the waste. The greater the unexplained level change,
Ah, the greater the potential volume of trapped gas. This parameter is conceptually simple, but its cal-
culation is fraught with uncertainty. All waste transfers and water losses from the tank, including
evaporation, must be accounted for. Given the state of historical records, the uncertainty in level meas-
urements with some instruments, and the possibility of slow leaks or intrusions, this calculation becomes
quite involved, and the relevance of the results can be difficult to assess.

To determine the likelihood of significant gas retention, both the unexplained level change, Ah, and
the quality of the data used to calculate this parameter must be evaluated. The logic structure for this
evaluation is shown in Fig. 3-7. The three inputs are the long-term level change and two parameters, Mg,
and Mg, used to judge the effect of correction terms on the estimate for Ah. These two parameters are
combined to infer a quality parameter, Q. The quality and the long-term level change, Ah, act as ante-
cedents to infer the level change likelihood, Ly;.

The inputs to this submodule are as follows.

Long-term level change, Ah . The effective Ah is calculated from four tank parameters:
Ah = h' - hgy + Ahg; + Ahg = Ahy + Ahgy + Ahg , (3-3)

where h’ is the recently measured level corrected for transfers since 1981, hg, is the level meas-
ured in 1981 used as a datum point, Ahy, is the estimated gas retention level change before the
1981 measurement, and Ah; is a correction to the level to account for evaporation since the
establishment of the measurement datum.* The difference between the first two terms in

Eq. (3-3) is denoted by Ahy,. The quality of Ah depends on all three differential levels. The
parameter Ah is expressed with the universe of discourse {Very Small}, {Quite Small},
{Moderate}, {Quite Large}, {Very Large}} (Ahe {VS,QS,M,QL,VL}.

Pre-81 Level
Correction Ratio, Mg+

Evaporation Correction
Ratio, Mg

Long-term Level
Change, Ah

Fig. 3-7. Logic structure for determining Iong-ierm level change predictor likelihood, L.

*A more detailed model and a complete description of the basis for this approach is given in Hopkins
(1994). i '
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Correction ratios, ME, Mg81 . The importance of the long-term level change estimate is affected by the
magnitude of the estimates of the pre-1981 gas level change, Ahg,, and the evaporation change in
relation to the measured level change since 1981 given by Ah,,. There can be wide variations in
the quality of the estimates for both Ah; and Ahg,, and if these parameters are the principal deter-
minants of the long-term level change, the credibility of the estimate for Ah is reduced. The rela-
tive importance of Ah; and Ahg, in determining Ah is represented in our model by the parame-
ters M;, and Mg, which are defined as

Mg, = |Abg, / Ahy| (34)
and
Mg = |Ahg / AhM (3-5)

The larger the absolute value of these rafios, the larger is the influence of the poorly known
parameters, Ahg and Ahg,. The ratios Mg, and Mg are represented as linguistic variables using the
universe of discourse {{Small}, {(Medium}, {Large}} (Mg, and Mg € {S,;M,L}) where the descriptors
refer to the size of the ratio. The quality estimate that is used to interpret the level change is
based on these two ratios.

Table 3-9 summarizes the universes of discourse used for these parameters; the associated membership
functions are shown in Fig. 3-8.

Implication Rule Bases for Long-Term Level Change Likelihood. The two ratios, Mg, and M; are combined to
infer the quality parameter Q. The rule base for this inference is shown in Table 3-10. The quality is
expressed using the sets {Poor}, {Fair} and {Good}, (Qe {P,F,G}. In this rule, if either Mg, or Mg has mem-
bership in {Low], then the quality parameter is reduced. This rule is almost symmetric, but slightly more
weight is given to the ratio associated with the evaporation level estimate.

Table 3-9
Summary of Input Elements.for L.ong-Term Level Change Logic
Membership
Parameter Symbol Universe of Set Rule Base Function
Discourse Abbreviations| Table Figure

Long-term 3-11 3-8
Level Ah {{Very Small}, {Quite {VS,QSM,
Change Small}, {Medium}, QL,VL}

{Quite Large},

{Very Large}}

l Evaporation

Correction Mg {{Small},{Medium},
Term {Large}}
Pre-1981
Correction Mg {{Small},{Medium},
Term {Large}}
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Long-term Level Change, Ah [in]
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Level Ratios Mg, and M¢

Fig. 3-8. Membership functions for Ah, M, and M used in the L,;, logic submodule.

Table 3-10
Conflation Rule Base for M, and M to Generate Q
Q Rules

L F P P

Mg, M F F P
S G F P

S M L

M,

The rule base for relating the level change, Ah, and the data quality modifier, Q, is shown in Table 3-
11. The output of this conflation rule base implies a likelihood function, L, , that is analogous to that for
the barometric pressure measurements discussed in the previous section. If the quality is good, then the
rule simply reflects the likelihood inferred directly from Ah. However, if the quality judgment is only
“fair” or “poor,” then the likelihood associated with Ah is relaxed toward membership in {Unresolved].
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Table 3-11
Conflation Rule Base for Ah and Q to Generate L,,

L, Rules
G VU QU U QL VL
Q F QU U U U QL
P U U U U U
VS Qs M QL VL
Ah

3.3.3. Aggregation of L; and L, to obtain L, The aggregate predictor likelihood is inferred
using the logic structure in Fig. 3-9. The rule base with Ly and L,;, as the antecedents is given in Table 3-12.
This rule is symmetric in the weight given the two likelihoods, L,, and L. The basic strategy of the rule is
to intensify the output likelihood if the inputs agree. For example, a {Very Likely} and a {Quite Likely}
combination of antecedents implies a {Very Likely} consequent for L;, whereas a {Very Likely} and {Unre-
solved} set of antecedents implies {Quite Likely} for L,. Mixed “unlikely” input memberships yield the
mirror image of the “likely” ones . If the antecedents are contradictory, then the aggregate likelihood
relaxes towards unresolved. For example, L€ {Very Likely} and Lge {Very Unlikely} results in
Lpe {Unresolved]}.

Barometric Pressure

Predictor Likelihood, Lg Aggregate Predictor

Likelihood, Lp

Long-term Level Change
Predictor Likelihood, LAn

Fig. 3-9. Logic structure for combining barometric pressure and unexplained level predictors to obtain
final predictor likelihood, Lp.

Table 3-12
Convolution Rule for Gas Predictors Ly and L,, to Generate L,
Ly Rules
VL U u VL VL VL
QL U U QL VL VL
Lon U vU QU [9) QL VL
QU VU vU QU U U
VU vuU vuU vU U U
vuU QU . U QL VL
L
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3.4. Enabler Likelihood Logic Module
Both gas generation and retention are required for a tank to pose a flammable gas hazard. In fact, the

original FGWL criteria were based almost exclusively on waste characteristics and the degree of similar-
ity to the waste in Tank SY-101. Certain tank characteristics act to enable gas generation or retention but
are not sufficient alone to cause a hazard. These parameters are called gas enablers in this analysis. To
obtain a likelihood based on enabler parameters, both gas generation and retention are examined. Para-
meters in the gas enabler category are similar to predictors in the sense that they can give indications of
the presence of gas, but unlike predictors, they provide no direct information on the amount of gas. The
overall logic structure for enabler likelihood, Ly, is shown in Fig. 3-10. There are two basic components of
the gas enabler estimates—the potential for gas generation, G, and the potential for gas retention, R.

Organic Concen- Supernate Intensive
tration,Co Retention
Potential, R
Supernate Extensive
Retention
Specific Potential, Ry
Gravity, S
Supernate
Volume, VN Aggregate
Retention
. Potential, R
Solid Layer Solids Intensive
Porosity, ® Retention
Potential, Rg
Solids Extensive
Retention
Liquid Fraction ‘ Potential, Rg
in Solids, Fj
Aggregate
Solid Layer Enabler
Volume, Vg Likelihood, Lg
Organic Concen-___ chemical Gas
tration,Co Generation
Potential, Gt
Waste Aggregate Gas
Temperature, T— : Generation
. _Potential, G
Volumetric
Heat —
Generation, q™
Radiolytic
- . Gas
Liquid Fraction Generation

in Waste, FT Potential, GR

Fig. 3 -10. Overall logic tree for gas enabler likelihood, L.
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3.4.1. Gas Generation Potential, G. Gas generation parameters are divided into thermolysis and
radiolysis gas generation categories . Thermolysis occurs as a result of the thermal decomposition of
organics in the waste. The following elements of evidence are used to draw inferences about thermolytic
gas generation. )

Total Organic Carbon, C,. Generation of gas in the waste tanks has been identified strongly with the
presence of complexants. In our model, this is represented by the primary input, C,, the per cent
of total organic carbon. The membership functions are based on an analysis by Agnew.” The
universe of discourse for C, is {{Low}, {Medium}. {High}} (Coe {L M,H}).

Waste Temperature, T . The other primary characteristic for chemical production of gas is the waste
temperature. Membership functions used for waste temperature are intended for illustration
only; more accurate membership functions can be developed based upon expert elicitation. We
represent T linguistically with the sets {Low}, {Medium} and {High}, (Te {L,M,H}).

Radiolytic gas generation results from the decomposition of water, and the model logic assumes a
dependence on the following elements.

Volumetric Heat Generation, "’ . In our simplified illustrative model, the gross radionuclide decay
rate determines the radiolysis rate. This is just the known heat load divided by the waste
volume. The universe of discourse for q'” is {{Low}. {Medium}, {High}} (q""’< {L,M,H}).

Liquid Fraction for Gas Generation, FT . The other basic factor affecting gas production by radiolysis is
the amount of available liquid. In the logic structure here, this is represented by F; defined as

Vn+ V
Fr=XNT Y1, (3-6)
T VT

where V is the volume of waste and the subscripts I, T, and N refer to interstitial liquid, total
waste, and supernatant liquid, respectively. The interstitial liquid volume is found from

Vi =Fsw®¢ Ve +®p Vp , _ (3-7)

where @ and V are the porosity and volume of the salt cake (subscript C) and the sludge
(subscript D) and Fg,, is the fraction of salt cake that is wet. The sets describing F; are {Low]},
{Medium} and {High), (Fre{L,M,H}).

This module should be viewed as representative of more complex structures that could be developed to
incorporate more detailed phenomenological pictures of waste behavior. The universes of discourse for
these parameters and the rule bases in which they appear are given in Table 3-13; the corresponding
membership functions are shown in Fig. 3-11.

Implication Rule Bases for Gas Generation Potential

In our logic model, the total organic content (TOC) in the waste is combined with the waste tem-
perature to infer the gas generation activity from decomposition of organic waste components as shown
in Fig. 3-12. A high temperature along with a high TOC provides the potential for high gas generation
rates in the waste. This rule base (Table 3-14) is structured so that the influence of TOC is the stronger in
determining generation potential and when the inputs are in agreement the output is intensified. The
universe of discourse for Gy is {{Low}, {Medium}, {High}}, (Ge {L,M,H}).

*S. F. Agnew, “Correlation of FGWL Tanks with Total Organic Concentrations” Los Alamos National
Laboratory, Private Communication (1996). i '




Table 3-13
Elements of Evidence Used 1o Infer Gas Generation Potential, G

Member-
Universe of Set Rule Base ship
Discourse Abbreviations | Tables | Function
Figure
Total Organic {{Low},{Medium], {LM,H)} 3-14 3-11
Carbon {High}}
Waste {{Low},{Mediumj, {LM,H} 3-14 3-11
Temperature {High}}

Volumetric 3-15 3-11
Heat {{Low},{Medium}, {LMH)}
Generation {High}}
Liquid , 3-15 3-11
Fraction for {{Low},{Medium}, {LMH]} '
Gas {High}}
Generation

Table 3-14
Conflation Rule Base for Combining C, and T to Generate G;

Gr Rules
H M H H
C, M M H H
L L L L
L M H
Temperature, T

The conflation rule base for combining q”"* and F; to yield a gas generation potential from radiolysis is
shown in Table 3-15. In this rule, the volumetric heat generation rate has a stronger influence than does
the liquid fraction in determining the generation potential from radiolysis. The universe of discourse for
Gy is the same as for G

Table 3-15
Conflation Rule Base for ¢’ and F; to Generate Gy

. GgRules

"

v

Ll g
ol ot ol 4
£ [l B9
o] K4 fo oo

Liquid Fraction, F;




Fig. 3.11 (Quark Figure)
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Organic Concen- Chemical Gas

tration,Co Generation
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Fig. 3-12. Gas generation potential logic submodule.

The phenomenological rule base defining the relationship between the radiolysis and thermolytic genera-
tion potentials to infer the total gas generation potential, G, is shown in Table 3-16. G is expressed using
the universe {{Low}, {Medium]}, {High}, {Very High}}, (Ge {L,M,H,VH}). Note that the output class of sets
is expanded from the inputs. Also the influence of chemical production is given greater influence in this
rule. If both potentials are high, then the rule evaluates to {Very High] for the total potential. The use of
G to evaluate the complete enabler likelihood, L, will be discussed in Sec. 3.4.3 after the other component
in its determination, the retention potential R, is considered.

Table 3-16 ,
Conflation Rule Base for G and G; to Generate Aggregate Generation Potential G
G
H H H VH
GT M M M H
L L L M
L M H
GR

3.4.2. Gas Retention Potential, R. Gas retention is considered a strong function of the waste type,
and this idea underlies the logic structure. Various retention mechanisms exist, and a more detailed logic
structure would be needed to represent the level of complexity in this area. The pilot AR model deals
only with an illustrative logic structure for evaluating gas trapped as bubbles.

The following parameters are used for determining supernate gas retention likelihood.
Total Organic Carbon, C,. The TOC is known to be a factor in the retention of gas in slurry. The

universe of discourse here is the same as for C, as a primary input for chemical generation
potential: {{Low}, {Medium} {Highj}} (Coe {L,M,H}).

Specific Gravity, S . The solid fraction in a slurry has been related to the gas retention potential. Here
we use the specific gravity as a measure of this property. Specific gravity is represented as a
linguistic variable with the sets {Low}, {Medium], and {High}, (Se {L,M,H}).




For salt cake and sludge waste types, the parameters used to determine waste retention effectiveness are
as follows.

Solid Porosity, @ . The solids layers need porosity to retain gas. The porosity used in this model is
defined by

q)av = CI)C VC +(I)D VD , (3-8)
VC + VD

where @, and V, are the porosity and volume of the salt cake (subscript C) and sludge ( subscript
D), respectively. Thus, the porosity used is a waste volume (or height-)-averaged porosity. The
universe of discourse is {{Low}, {Medium}, {High}}, (®e {L.M,H}).

Liquid Fraction within Solid Layer, F;. In our logic structure, it is assumed that gas retention within the
pores will occur only if liquid is present. We use liquid fraction in the solid layers as a measure
of this capability. The liquid fraction used for retention in the salt cake and sludge layers of the
waste is defined by

\
F=_ Y1 (3-9)
TNV

where again V; is the volume of interstitial liquid, V is the total waste volume, and Vs the
volume of supernate. No distinction is made between salt cake and sludge. in the intrinsic gas
retention capability The universe of discourse for F; is {{Low}, {Medium}, {High}}, (F1e {L,M,H}).

Total volume of supernate, Vy, and solids, V. 1t is also necessary to account for the amount of material of
a particular type available to retain gas. This is accomplished by using the total volume of
supernate, Vy, and solids, V, as antecedents in conjunction with the intrinsic retention potential.
Basically, consideration of the waste volumes allows one to extend inferences about the retention
capability in waste types to a tank-specific basis.

The universe of discourses used to express these parameters as linguistic variables is given in Table 3-17;
the corresponding membership functions for newly introduced elements of evidence are shown in Fig. 3-13

Table 3-17
Elements of Evidence Used to Infer Gas Retention Potential, R

Member-
Parameter Symbol| Universe of Discourse Set Rule ship
Abbreviations Base Function
‘ Table Figure
Total Organic {{Low},{Medium}, {High}} {LMH} 3-20 3-11 “
Carbon Co
Specific Gravity S {{Low},{Medium}, {High}} {LM,H} 3-20 313 |i
Total Volume of \ {{Low},{Medium)}, {High}} {LM,H]} 3-21 3-13
Supernate
Solid Porosity ) {{Low},{Medium)},{High}} {L,M,H]} 3-18 3-13
Liquid Fraction in {{Low},{Medium},{High}} {LMH}] | 318 3-13
Solid Layer F,
Total Volume of {{Low},{Medium}, {High}} {LM,H} 3-19 3-13
Solids Layer :
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Fig. 3-13. (Quark figure)

3-24




tration,Co

Specific
Gravity, S

Supernate
Volume, VN

Solid Layer
Porosity, ®

Liquid Fraction
in Solids, Fj

Solid Layer
Volume, Vg

Organic Concen-

Implication Rule Bases for Gas Retention Potential
The primary inputs for retention in liquid and solid layers are combined to yield a combined poten-
tial for gas retention, R, as shown in Fig. 3-14. Retention potential in solids layers is evaluated using the
phenomenological rule base for @ and F, in Table 3-18. This is a symmetric rule in which both inputs are
valued equally and the inferences are reflected about the diagonal. R is represented using the sets {Low},
{Medium}, and {High}, (Rse {L,M,H}). This universe of discourse also is used for all subsequent infer-

ences where some form of retention potential appears as the consequent.

Supernate Intensive

Retention
Potential, R
Supernate Extensive
Retention
Potential, Ri_

Solids Intensive

Retention
Potential, Rg
Solids Extensive
Retention
Potential, Rg

Aggregate
Retention
Potential, R

Fig. 3-14. Logic submodule for gas rentention potential.

Table 3-18

Conflation Rule for ® and F, to Generate R,

Rg Rules

T
[wnd Eent Ko R
e [l K4 K<

Liquid Fraction F;
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The effect of total solids layer volume is accounted for with the rule base for R, and V; in Table 3-19. This
rule base intensifies R, if the waste volume is high.




Table 3-19
Conflation Rule Base for R, and V¢ to Generate Rg

R; Rules
H H H H
R, M M M H
L L L M
T M H
Vs

Retention potential in the supernate layer is treated in the same manner, and the combination rules to
obtain R; are given in Tables 3-20 and 3-21.

Table 3-20
Conflation Rule Base for Combining C,and S to Generate R,
R, Rules
H M H H
C, M L M H
L L L M
L M H
Specific Gravity S
Table 3-21
Conflation Rule Base for R, and V, to Generate R,
R Rules
H H H H
R, M M M H
L L L M
L M H
Vn

In general, the waste in a tank may have both supernatant liquid and salt cake/sludge, so a rule for infer-
ring the aggregate retention from the volume-averaged, waste-specific retention potential is given in
Table 3-22. If the waste is judged to have only one waste type, then the retention of the other type is set to
full membership in the {Low} set.

3.4.3. Aggregation of Generation and Retention Potential to Obtain the Enabler Likelihood, L.
After the gas retention and generation potentials are evaluated, they are combined to infer the enabler gas
likelihood, Lg (see Fig. 3-10). The implication rule base for this inference is shown in Table 3-23. As noted
earlier, L;; is defined on the same universe of discourse as the predictor likelihood L; — {{Very Unlikely]},
{Quite Unlikely}, {Unresolved}, {Quite Likely} and {Very Likely}}, (Lge {VU,QU,U,QL,VL}). Note thatin
the current rule base the generation potential is expressed with four sets and retention with only three.
This assumes that one can express expert judgment about generation more precisely than for retention.
Expert elicitation would be required to test this proposition. A symmetric rule using three sets to define
G could be easily substituted.
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Table 3-22
Conflation Rule Base for Different Waste-Type Retentions, R, and R,
to Generate the Aggregate Retention, Potential R

R Rules
H H H H
R, M M M H
L L M H
L M H
Rg
Table 3-23
Conflation Rule for Combining Generation, G, and Retention, R, to Give Enabler Likelihood, L,
Lz Rules
H U QL QL VL
R M QU QU QL QL
L VU VU QU U
L M H VH
G

The convolution of the enabler likelihood with those for the predictor and indicator likelihoods will be
discussed in Sec. 3.6.

3.5. Indicator Likelihood Logic Module
The logic structures for both the predictor and enabler likelihoods were developed to facilitate

judgments about evidence for gas retention in a tank. However for some tanks additional data are
available related to observations of GRE. Our logic structure incorporates the fundamental inference that
a GRE is evidence of gas retention. In certain tanks this evidence may be unambiguous, for example, in
Tank SY-101 where dome-space measurements of hydrogen concentration above the LFL and coincident
significant pressurization have been observed. In its unmitigated state SY-101 was the best example of a
tank that exhibited Rayleigh-Taylor instability—the contents of the tank “rolled over” and evidence of
this was apparent in level, pressure, and temperature changes. Although the evidence for other tanks is
not necessarily so strong, the screening algorithm has been developed to include judgments based upon
evidence of GRE behavior. This is done using a class of parameters referred to as gas indicators. Indica-
tors can be positive or negative. When positive indicators are present they are very strong evidence of
GRE behavior; a high dome-space flammable gas concentration measurement is an example. A negative
indicator has the property that, if it is judged to be strongly present, the tank can be unambiguously
excluded from the FGWL. For testing purposes we have used the WHC “Quick Screen” criteria (Hopson
1994) as a negative indicator. If a tank evidences this indicator then concentrations of flammable gas
above the LFL in the tank dome space can be judged to be extremely unlikely. Each of the indicators is
discussed separately below.

The complete logic structure for the class of gas indicator parameters is shown in Fig. 3-15. This is
rather complicated but is intended to illustrate the many issues associated with inferring GRE behavior
from the observational record. A condensation to the right-most chain of inferences is shown in Fig. 3.16.
There are two separate groups of positive indicators for which likelihood judgments are made. The first
uses the observational evidence from the dome space. The likelihood associated with this evidence is Lp.
The second positive likelihood is Ly, . It is used to evaluate the evidence of a GRE from observations of
waste dynamics. All positive indicator likelihoods are defined on the same universe of discourse {{Unre-
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solved}, {Quite Likely}, {Very Likely}, {Extremely Likely}} (Le {U,QL,VL,EL}).* “Extremely likely” is used
only for indicators and expresses a higher level of certainty than one might associate with predictors or
enablers. Membership in {EL} is meant to override mildly contradictory evidence from other parameters
and indicate strongly the presence of gas. Finall,y the single negative indicator Cy uses the Quick Screen
method to judge the worst-case gas concentration in the dome. In a more realistic implementation this
primary input would be supplemented with other inputs to obtain a more broadly based negative

indicator.

Gas Concen-
tration,Cg

Observation
Quality, Xg

Number of
Observations, Ng

Overpressure,O

Observation

Quality, Xg
Number of

Observations, Ng

Short-term
Level Change, éh

Number of
Observations, Ngh

Short-term
Temperature
Change, 56

Number of
Observations, Ngg

Time Correlation,

Maximum
Dome Space

Concentration, C

Lex
Lg
Dome Space
Indicator
Likelihood, Lpy
Lox
Lo
Low
LghN
— Aggregate
Lshe Indicator
Likelihood, Lj
LsoN
Waste Dynamics
- Indicator
Likelihood, Lyy
(Le)

Fig. 3-15. Complete logic structure for gas indicator likelihood.

*As noted earlier, positive indicators cannot disprove the existence of retained gas so the UOD for these
likelihoods contain none of the unlikely hedges.
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Dome Space
Indicator
Likelihood, Lp

Lpw

Aggregate
Waste Dynamics Indicator

Indicator —— Likelihood, L
Likelihood, Lyy

Maximum
Dome Space
Concentration, C py

(Lc)

Fig. 3-16. Major component likelihoods for aggregate gas indicator likelihood, L,.

3.5.1. Dome-Space Gas Indicator. Indication of a GRE using data from the dome space can be
based on gas concentration measurements or upon evidence of dome pressurization. The two major
likelihoods are L, the likelihood associated with the gas indicator based on dome-space concentration
and L, a similar parameter for dome-space pressurization. The logic module for the dome-space
indicator is shown in Fig. 3-17.

Gas Concen-
tration,Cg

Lcx

Observation
Quality, Xg -

Number of
Observations, Ng

Dome Space
Indicator
Likelihood, Lp

Overpressure,O

Lox

Observation __| Lo
Quality, Xo

-Number of
Observations, N

Fig. 3-17. Dome-space gas indicator combination rules tree.
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The following elements of evidence are used in this submodule.

Dome-Space Concentration from GRE, C,. A significant GRE would result in a sudden increase in the
dome-space flammable gas concentration. If a concentration near the LFL is measured,* then a
strong inference can be made that the tank retains a significant amount of gas. The only ques-
tion remaining is to determine the validity of such gas-release measurements. A logic sub-
module could be developed for this evaluation if necessary. Judgments concerning instrument
suitability and calibration as well as concerns about time-dependent tank behavior could be
incorporated. We have chosen not to do this for the pilot logic structure here. Note if a steady-
state gas concentration above the flammable limit were measured in a tank, it would be, by
definition, a flammable gas tank. Thus, the steady-state gas concentration is, in principle, a gas
indicator. However, all tanks recently were measured for steady-state flammable gas concen-
trations in the dome space, and none had a concentration close to the LFL. For this reason, the
steady-state gas concentration was not included in the screening criteria discussed here. The gas
concentration is expressed as {Low}, {Medium} and {High} (C,e {L,M,H}), depending on its
relationship to the LFL concentration. A high gas concentration is considered prima facie,
evidence of a GRE. Tank experts make the assignment of membership in the sets describing
concentration directly based on their evaluation of measured flammable gas concentrations.

Evaluation of Observation Quality, X,. An estimate of C, may be based on any of several approaches to
analyzing the observational data. Each of these approaches has some uncertainty or imprecision
associated with it. To account for such factors, a quality parameter, X;, is used. The function of
X, is to describe how the estimate was made. As an example of this approach, we express X,
using the sets {Measurement}, {Statistical Extrapolation}, or {Analytical Extrapolation},

(Xge {M,SE,AE}). The set {Measurement] represents direct measurements of the maximum gas
concentration. The set {Statistical Extrapolation} is for extrapolations from partial data that may
not include the maximum concentration reached but provids a sound basis for determining a
time-dependent concentration profile. The set {Analytical Extrapolation} is for situations where
fragmentary data are used with a model of gas release and transport to estimate the maximum
gas concentration. These sets are fuzzy, so membership in more than one set for X; is allowed.

Number of Observations, N,. The number of observed events is also important in determining the
quality of the concentration event data. A single or rare event has less weight and credibility
than a large number of events. The variable N, is a measure of the number of potential events

that have occurred and can have membership in sets {Few), {Several} or {Many], (Nge {F,S,M}).

Dome-Space Pressurization from GRE, O. A gas-release event can pressurize the dome space suddenly.
The measure used for tank pressurization events could be, for example, the sample mean of
observed overpressure events. The magnitude of the event is an indication of the size of the
GRE and hence retained gas.” The question remaining is to determine the validity of such
measurements, and the discussion above concerning concentration measurements applies here
as well. Pressurization values use the universe {{Low},{Medium},{High}}, (Oe {L,M,H}).

Evaluation of Observation Quality, X,. The basis for the estimate of O is assessed using sets that indi-
cate the type of judgment used in determining the magnitude of the overpressurization. The
quality input here is of exactly the same form as for X;. The primary input, O, is modified by
measures of certainty given by X, with the universe of discourse of {{Measurement}, {Statistical

" We ignore here the question of computing the lower flammability limit for an uncertain mixture of
gases. Note however that this is less critical when using fuzzy sets to represent the concentration
linguistically than when a sharp threshold is used.

™ We neglect here the question of release fraction.
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Table 3-24
Elements of Evidence used to Infer Dome-Space Indicator Likelihood, L,

Extrapolation}, {Analytical Extrapolation}}, (Xo€ {M,SE,AE}). The use of this universe of
discourse is the same as for the observation quality for gas concentration discussed above.

Number of Observations, Ny. The number of observed events is important in determining the quality
of the pressure event data. A single or rare event has less weight and credibility than a large
number of events. The variable N is a measure of the number of potential events that have
occurred and can have membership in sets {Few}, {Several} or {Many}, (NOe {F,S,M}).

Table 3-24 gives the universes of discourse for these elements of evidence, and Fig. 3-18 gives the
corresponding membership functions. The magnitudes used here for overpressurization are for
illustration purposes. In practice, separate membership functions for different tank sizes or a more
complicated logic structure that incorporates dome-space volume may be necessary.

Observations

Member-
Parameter Symbol Universe of Set Rule Base ship
Discourse Abbreviations Table Function
Figure
Dome-Space Gas {{Low},{Medium)}, {L.M,H} 3-25 3-18
Concentration Co {High}}
Dome Overpressure O {{Low},{Medium}, {L,M,H} 3-25 3-18
{High}}
Concentration Xg {{Measurement}, {M,SE,AE} 3-25 NA
or {Statistical
“ Pressure Observation Xo Extrapolation},
Quality {Analytical
Extrapolation}}
Number of N, {{Few},{Several}, {E,S,M} 3-26 3-18
Concentration {Many}}
or N
Overpressure ©
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Fig. 3-18. Membership function for input elements in the dome-space indicator logic submodule.




concentration gas likelihood, Lex.
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Implication Rule Bases for Dome -Space Indicator Likelihood
Figure 3-19 shows the logic submodule for inferring the dome-space gas concentration likelihood, L.
The concentration, C,, and the certainty, X,, are combined using the rule base in Table 3-25 to generate a

Gas Concentration

Likelihood, Lg

Fig. 3-19 Logic submodule for dome-space gas concentration likelihood.

Table 3-25
Conflation Rule Base for C, and X, to Generate Likelihood Ly
Lcx Rules

M U QL EL

C, SE U U VL
AE U U QL

L M H

C

The output of this rule is combined with the number of events that have occurred, N,, to generate the
dome-space concentration likelihood, L,, using the rule base shown in Table 3-26. Here the number of
measurements, N, acts as a qualifier on the likelihood implied by the concentration, C,. A high meas-
ured dome-space gas concentration likelihood, Loy € {Extremely Likely} implies a high likelihood of
retained gas, so L, € {Extremely Likely} if several or many events have been observed, but with member-
ship only in {Quite Likely} possible when there are few measurements. Membership in {Unresolved} for
Lcx implies that a GRE has probably not been observed. This leaves the evaluation unresolved rather
than implying that gas retention is unlikely. Fewer measurements always relaxes the likelihood implied
by Lex for many measurements toward membership in {Unresolved}. The same rule bases are used to

:4

infer L with O substituted for C,, X, for X, and N, for N,.

Table 3-26

Conflation Rule Base for Combining L. and N, to Generate L,

L; Rules

EL
EL
VL
U
M




The indicator likelihoods L, and L, for concentration and pressurization evaluations are used as
antecedents in the rule base for the overall dome-space indicator likelihood L;,. The rule is shown in
Table 3-27. This rule incorporates strong intensification and relaxation to obtain either a definitive or an
unresolved judgment. In this rule, if either antecedent likelihood is {Extremely Likely}, then so is Lp.
Note that L, is unresolved if one antecedent is unresolved and the other is either unresolved or quite
likely. Lp appears as an input to the final indicator likelihood, L;, This is discussed in Sec. 3.5.4

Table 3-27
Convolution Rule Base for L; and L, to Create L;
Ly Rules

EL EL EL EL EL
VL QL VL EL EL
L, QL U QL VL EL
U U U QL EL
U QL VL EL

Lo

3.5.2. Waste Dynamic Indicator Likelihood Logic Submodule. Sudden changes in tank level or in
the waste temperature profile are strong indications of a GRE. A logic structure based on this assertion is
shown in Fig. 3-20. Indicator likelihoods based upon short-term level change and short-term changes in
tank axial temperature profile are used. When either of these likelihoods is large, a GRE is strongly indi-
cated. If there is a multiplicity of such events occurring periodically and correlated in time, then one
expects that the indication would be even stronger. This logic is implemented by including a primary
input g, to evaluate the degree of correlation between short-term level and temperature changes.

Long-term level change was discussed as a gas predictor. A sudden change in level can occur during
a GRE. The relationship between the long-term and short-term level changes as used in this study is
shown in Fig. 3-21. Larger short-term level drops are indicative of larger release events. Gross material
motion is also observed in some GREs, so changes in temperature profile are also evidence considered in
this submodule. The evaluation depends simply on the size of the short-term level or temperature
changes, some judgment of their observed frequency, and whether the two signals are correlated.

Short-term
Level Change, &h

LSh

Number of

Observations, Ngp —— Lshe

Short-term
Temperature Waste Dynamics
Change, 66 Indicator
Likelihood, Ly

Nufnber of
Observations, Ngg

Time Correlation,

Fig. 3-20. Logic structure for waste dynamics likelihood.
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Fig. 3-21. Level parameters used in the screening algorithm.
The following elements of evidence are used in this submodule.

Magnitude of Short-Term Level Change, 6h. Expert judgment is used to evaluate short-term level changes.
The experts make their judgment on the size of such changes based on the following criteria.

Have one or more rapid changes in level occurred in the tank?
What was the characteristic magnitude of the events?

How confident are they that the event did occur?

Are the indications and instruments redundant?

W

The characteristic level change for the events is represented with the universe of discourse of
{{Small}, {Medium}, {Large}}, (She{SM,/L}). ‘

Periodicity for Short-term Level Change, N, Expert judgment also is used to evaluate the temporal char-
acteristics of the short-term level changes. The experts make their judgment of such changes
using a criterion such as the following.

Is there a history or multiplicity of such events or does the event occur periodically?

The number Ny, is represented linguistically with the sets {Isolated}, {Sporadic} or {Periodic},
(Nse {LS,P}). Isolated means a single or a very few events; sporadic means events at irregular
intervals; periodic suggests regularly occurring events in considerable numbers.

Short-term temperature Change, 66. The temperature profile change, 80, is a qualitative judgment and is
assigned membership directly in the groups {Unlike}, {Similar} and {Identical}, (58< {UL,SM,ID})
that describe how closely the observed temperature profile change agrees with that historically
associated with a GRE. Membership in more than one set is possible.

Periodicity for Short-term Temperature Change, Ng. The temporal characteristics of short-term tempera-
ture changes are evaluated using expert judgment. The experts make their judgment of such
changes using the same criteria and universe of discourse as for level change.

Waste Dynamic Parameter Correlation Parameter, x. If the changes in level and temperature are cor-
related in time, then the waste dynamic indicator would be considered to be stronger. The
degree of correlation is evaluated using expert judgment. The time correlation is expressed by
the universe of discourse of {{Low}, {Medium}, {High}}, (xe {L,M,H]}). The experts rank the cor-
relation, ¥, of level and temperature changes according to a numerical scale from 0 to 1 with 1
meaning perfect temporal correlation.




Table 3-28 gives the universes of discourse and where they appear in rule bases for these elements of

evidence, and Fig. 3-22 gives the corresponding membership functions. Note that for several of these
elements there are no membership functions specified. The DOMs for these qualitative elements are
assigned directly based on expert judgment. '

Table 3-28

Elements of Evidence Used to Infer Waste Dynamics Indicator Likelihood, Ly,

Member-
Parameter Symbol Universe of Set Rule Base ship
Discourse Abbreviations Table Function
Figure
Short-Term Level {{Small},{Medium]},
Change oh {Large}} {SM,L} 3-29 3-22
Periodicity for NA
Short-term Level N, {{Isolated}, {Sporadic}, {LS,P) 3-29 .
Change {Periodic}}
Short-term )
Temperature 59 {{Unlike},{Similar}, {UL,S,1} 3-30 NA
Change {Identical}}
Periodicity for
Short-term Nso {{Isolated}, {Sporadic}, {LS,P} 3-30 NA
Temperature {Periodic}}
Change
Waste Dynamics {{Low},{Medium},
Correlation X {High}} {LM,H} 3-32 3-22
S M L
1.0
=¥
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Short-term Level Drop, §h [inches]
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Fig. 3-22. Membership functions for input elements in the waste dynamics indicator module.




Implication Rule Bases for Waste Dynamics Likelihood

The level drop, &h, is combined with Ng, to imply a likelihood, Lg, according to the rule base shown
in Table 3-29. Note that this rule only implies membership in {Extremely Likely} if the level changes are
large and if they are periodic. )

Table 3-29
Qualification Rule Base for dh AND N, to Give L,
L, Rules
L QL VL EL
Sh M U QL VL
S U U QL
I ] P
N

The rule used to evaluate Ly based on the temperature changes and their temporal characteristics is
given in Table 3-30. This rule is identical in structure to that for Ly,

Table 3-30
Qualification Rule Base for dq and N, to Give L,
Ly Rules
I QL VL EL
30 S U QL VL
UL U U QL
I ] P
Nz,

The temperature and level change likelihoods Ly and Ly, are antecedents for the likelihood rule base
given in Table 3-31 to infer an intermediate likelihood, Ly Here the implication operator uses strong
intensification and relaxation to differentiate between tanks where the waste dynamics indicator data are
clear and where they are ambiguous.

Table 3-31
Convolution Rule for L, and L, to Create L,
Lge Rules

EL EL EL EL EL
VL QL VL EL EL
Lq QL U QL VL EL
U U U QL EL
U QL VL EL

Lan

The rule for evaluating the likelihood, Ly, based on the expert judgment on the appropriate inter-
pretation of the short-term changes and the strength of the time correlation between the level and tem-
perature changes, is shown in Table 3-32. A high value of y intensifies the implication.




Table 3-32
Qualification Rule for L;,, and y to Create L,

Ly Rules
H U VL EL EL
X M U QL VL EL
L 1§ U QL EL
U QL VL
Line

3.5.3. Logic Submodule for Maximum Dome-Space Concentration from Quick Screen, C,,. The
dome space and waste dynamics indicators are both positive. That is, if they evaluate to a likelihood of
extremely likely then the evidence for flammable gas behavior is very strong. By the same token it would
be useful to have a negative indicator. A negative indicator has a threshold value that indicates conclu-
sively that some necessary condition for flammable gas concentrations in the dome space—gas genera-
tion, retention and release or sufficient concentration of flammable gas in situ—is not possible in the tank
because of some physical characteristics of the waste/tank environment. As a model for this class of
indicators, we have used the maximum dome-space concentration, C,,, obtained from the WHC quick-
screen methodology (Hopkins 1995). As used here,

CM=0aVs (3-10)

where o is a tank-specific parameter with units per cent LFL/kilogallon of waste and Vs is the volume of
waste in the solids layer. The constant o is derived from data for Tank SY-101 and is used to estimate the
maximum amount of gas that could be released from the waste. This gas is assumed to be 97% hydrogen.
The key idea is that if a tank passes this extremely conservative test, then it is incapable of being a FGWL
tank. The universe of discourse for Cy, is {{Very Low},{Low},{Medium]},{High}}, (Cye {VL LM H}). The
membership functions for Cy are shown in Fig. 3-23. A high DOM in {VL} should preclude the tank
being placed on the FGWL. Membership in {L} will support other negative likelihoods.

VL L M H

0 25 50 75 100 125 150

Gas Concentration, Gy [ % LFL]

Fig. 3-23. Negative indicator gas likelihood membership function, L.

3.5.4. Conflation of L, Ly, and C,, to Obtain the Aggregate Indicator Likelihood. The evaluation
of L; involves logic rules for combining the dome-space indicator likelihood, Ly; the waste dynamics
indicator, Lyy; and the maximum gas concentration, C,4. This is shown in Fig. 3-24. We choose to use the




two positive indicators as antecedents to obtain an intermediate positive GRE indicator likelihood, Lpyw.
The rule base for this inference is shown in Table 3-33. Note that good agreement between the two
likelihoods intensifies the judgment of the likelihood of a GRE.

Dome Space
Likelihood, Lp
Lpw
Aggregate Indicator
Waste Dynamics Likelihood, L
Likelihood, Ly

Maximum Concentration
Cm

Fig. 3-24 Logic structure for evaluating L,.

Table 3-33
Convolution Rule for L, and L, to Create L,
Lpw Rules

EL EL EL EL EL
VL QL VL EL EL
Lp QL U QL VL EL
U U U QL EL
U QL VL EL

Ly

The GRE and the maximum concentration likelihoods then are combined to infer an aggregate gas
indicator likelihood, L. The rule for combining these parameters is shown in Table 3-34. This rule is
quite different from the one above. This is because we are evaluating two parameters where a high DOM
in {Extremely Likely] for the positive indicators and membership in {Very Low} for C is a physical and
logical contradiction. In this case, we ought to assume that some aspect of the primary input data is
incorrect and judge the indicator expectation to be unresolved. On the other hand, if one parameter has a
strong membership in an extreme set and the other is unresolved, then a strong judgment is possible.
Other versions of this rule base could be used if it were preferable to weigh the positive and negative
indicators differently. :




Table 3-34
Rule Base for Combining L., and C,, to Create L,

Ll Rules

e S

=] (o] [ o] P
%] =] [ fa [=
Slclalgle
glElclclae

Low

3.6. Aggregation of Predictor, Enabler, and Indicator Likelihoods to Obtain the Evaluation Output
Likelihood, L;

The likelihood evaluations from the three major likelihood classes, Ly, Lg, and L;, act as antecedents
to infer the final aggregate gas retention likelihood, L;. (See Fig. 3-1.) The linguistic variable L; is the last
output from the algorithm and provides the basis for the decision whether to screen. We consider the
indicator evaluation to be distinctly different from the predictor and enabler evaluations and therefore
chose to develop an intermediate inference first with the latter two as antecedents. Note that thisisa
judgment built into the structure of the model. We could have chosen to combine these likelihoods in a
different order or, alternatively, to have constructed a single rule base with all three likelihoods as direct
antecedents for Ly The rule base for combining the gas predictor and gas enabler likelihoods is shown in
Table 3-35. The intermediate positive indicator likelihood has the same universe of discourse as do Ly
and L;.

Table 3-35
Convolution Rule for Predictor L, and Enabler L to Create L,
Ly Rules
VL U U VL VL VL
QL U U QL VL VL
Ly U VU QU U QL VL
QU vU vU : QU U U
vu VU VU vU U U
vU QU U QL VL
Le

The rule base used for chaining this inference with the aggregate indicator likelihood is shown in

Table 3-36. Note that if L; € (Unresolved}, then the DOM in Ly is reflected—the consequent, Lz, has the
same DOMs as does Ly, p(Lg) = i(Lpg). If the antecedent likelihoods are in agreement, then the judgment
of L; is the output. This is consistent with the power assigned to the aggregate indicator likelihood in the
model rules provided above.




Table 3-36
Convolution Rule for Combining L, and L. to Create L,

Lz Rules
EL T T L L L
L U YU QU T oL VL
EU B EU EU U T
VU QU T oL VL

LPE

3.7. Probabilistic Expression for L.

As discussed briefly in Sec. 2, the aggregate likelihood, Ly, is a random variable. This is true because
most of the inputs to the inductive logic structure are themselves random. The inescapable uncertainty in
Ly means that any useful statement about the aggregate likelihood will be statistical in nature. We wish
to express Ly in the same terms as the likelihood sets that constitute its universe of discourse. This means
that a mechanism for measuring Ly quantitatively is needed to compute the appropriate statistics and,
second, that an additional operation must be used to express the statistical properties of L; as natural
language expressions.

3.7.1. Probability Density Functions for Input Elements of Evidence. There is no practical way
to determine the probability density function (PDF) for L; directly from the input parameters’ PDFs
because the total number of inputs is large and because of the nonlinear min-max operations performed
for each implication rule base. Therefore, the statistics for Ly must be obtained from Monte Carlo (MC)
sampling. The MC simulation consists of N trials where, for each trial, all of the input parameters are
sampled from their defining PDFs and a complete evaluation is performed with these sample inputs. The
immediate output from each trial is an estimate for Ly that is a DOM vector. We consider below how
input PDFs are defined, and then we discuss the calculation of statistics for L and the procedure used to
transform these statistics into a natural language expression for the aggregate likelihood. This natural
language expression then is compared with a criterion to determine whether the tank fails or passes the
screen or whether the evidence leads only to an unresolved conclusion.

For quantitative input parameters, the use of PDFs in the MC simulation here is very similar to that in
many applications. That is, for each trial i, the value of an input x; is given by x; = PDF (density, parame-
ters, seed, i) where density is the particular form of PDF used to represent X, parameters are the set of
numerical values required to specify the exact density function, seed is the number used to start genera-
ting a sequence of random numbers, and i denotes the i value of x generated. Quite often, a PDF is
specified by either the mean, x,, or median, x5, and the standard deviation, 6. In many purely numerical
algorithms, the PDF is used primarily to represent epistemic uncertainty. In such cases, there is a ten-
dency to use large values of 6 to “cover all the bases” and ensure that the tails of the distribution have
some detectable influence on the final output. This approach is unnecessary and is to be avoided in AR
models. The use of implication rule bases allows one to make explicit qualitative judgments about the
quantitative aspects of data; hence, there is no need to increase the variance to roughly approximate such
considerations.

A qualitative input also may be uncertain. In this case, we need some method to assign DOMs in the
sets used to express its qualitative value. We encountered this situation in Sec. 2 when the problem of
describing the temperature in a room without using a thermometer was discussed. Two simple
approaches that are consistent with how experts often describe qualitative data are used in this report. In
the first of these, we introduce a numerical scale to convert a linguistic variable to a quantitative value
and define membership functions for this converted variable to obtain DOMs. For example, this




approach was taken with y, the waste dynamics correlation factor, which is defined on the interval 0 to 1.
An assignment of ¥ = 0.9 means that the level and temperature changes associated with a GRE are con-
sidered to be well-correlated; it corresponds to full membership in the set {High}. The expert or group of
experts provides input for the specification of a PDF for y in the range [0,1] that is completely analogous
to that for a quantitative input. In the second approach, used here more often, DOMs for a qualitative
input are assigned directly. This could be done either by the expert himself or by an elicitor who
interprets the expert’s statements about the variability he associates with the input and translates it into
an appropriate PDF.

A complete evaluation with all of the major logic branches described here requires the specification of
40 parameters needed to calculate the primary inputs to the logic structure. In general, the PDFs are
taken from Hodgson (1995). For some parameters, variation of the parameter depends on other inputs.
For example, this is true of Cy;, which is a function of the total volume of waste in the solids layer. It also
should be noted that the heights of the waste layers and the total volume of waste are treated as depen-
dent variables. In these cases, the mean is taken from Hodgson, but the variation is obtained from a
simple auxiliary equation. For example, the height of the sludge layer is defined by hy, = § V;,, where f§ is
the ratio of the means of the height and layer volume.* This approach ensures that all correlated quan-
tities are treated correctly in the MC simulations. All of the qualitative input parameters appear in the
rules used to judge whether a tank exhibits GRE behavior. That is, in the positive portion of the indicator
likelihood module. For testing purposes, these parameters were specified so that there would be no clear
evidence of GRE behavior. This is consistent with the data available for the tanks used to demonstrate
the AR methodology. In actual use, it would be necessary to have a group of experts supply their
judgment about these qualitative factors.

3.7.2. Statistical Measures for L. The DOMs for L; in the sets {{Extremely Unlikely}, {Very

Unlikely}, {Quite Unlikely}, {Unresolved}, {Quite Likely}, {Very Likely], {Extremely Likely}} are
computed at the conclusion of each MC trial. We denote this as

Ls=v(EU,VU,QU, U, QLVLEL) =[x (5)j=17] , (3-11)

where ¥(S) is the DOM in set j. At the end of the simulation, we have N estimates for Ly. There are two
ways to calculate statistics for Lg using this vector.

It can be seen that there are seven distinct density function estimates associated with Lg:
PDF(Lg) = [ PDF(Y(S)) j = 1,7)] - (3-12)

One approach is to derive the statistics from this vector. In this case, if we ask about the value of Ly at
some quantile, q;, associated with PDF(Lg) we use the vector

' =1a5)j=17)]1 . (3-13)
Thus, the vector contains the DOMs at the q; quantile for each set in the universe of discourse for L;.

However, note that the vector g* is not itself the q; quantile for L;. We must specify how to process the
vector to compute q;(Lg). A natural approach is to define g(Lg) as

qi(LF) = max [qi(y(S}))i=1.7)] . (3-14)

This specification for q; is the maximum DOM associated with the likelihood sets at this quantile.

“In theory, B only depends on the cross-sectional area of the tank. However, the best-estimates for
volume and waste height do not always satisfy this relationship. Therefore, B is calculated from the
volume and height estimates.




A second approach to estimating statistics for L involves calculating a measure from L for each trial
and then obtaining an estimate for the density function of this measure in the MC simulation. The proc-
ess of calculating a single measure from DOMs in a class of fuzzy sets is called defuzzification. To
defuzzify, it is necessary to define membership functions for L. These are shown in Fig. 3-25. The asym-
metry in the membership functions here is intended to illustrate how degree-of-conservatism considera-
tions can be incorporated into an AR model. In this case, the membership functions reflect an adversion
to classifying the aggregate likelihood as either extremely or very unlikely. The choice of membership
functions will be discussed further in Sec. 5.

EUVU QU U QL VL EL

Aggregate Likelihood, Lg

Fig. 3-25 Membership functions for L.

A common defuzzification measure is the centroid. In this approach, each membership function is
multiplied by the actual DOM. We denote these weighted functions as C;. The union of the C, functions,

U G
J ’

is obtained using the normal max operator. This yields the outer envelope in regions where the C's
overlap. The centroid A for Lg resulting from a single MC trial is

1 1 (3-15)
ML= | XU Gdx/| U Gdx
J J
0 0

The centroid normally is considered to be the best-estimate approach to defuzzification; many other
estimators exist (Ross 1995).

As an example of centroid defuzzification, consider Ly; = [0,0,.1,.6,.4,.2,0]. Figure 3-26 shows the
DOM-weighted union. In this case, the centroid is A(L;) = 0.56. After N MC trials, the PDF for the
centroid can be estimated, and the desired statistical properhes can be obtained. We denote the g;
quantile of the centroid by Ax(q)."

"Clearly, one can also compute moments associated with the PDF for A. However, we consider the
quantiles to correspond more closely to the form in which an expert normally expresses his confidence in
an evaluation.
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Fig. 3-26. Example of defuzzification of L using the centroid method.

3.7.3. Natural Language Expression for Evaluation Result. The result of each MC trial, Ly, is an
estimate for the state vector describing the gas retention status of a tank. The measures q;(Ls) and A :(q)
are two distinct ways to quantify the aggregatiorf of these trials and to determine quantiles for LF.
However, it is still necessary to specify how these measures are to be used to express the evaluation
output.

As noted earlier, we require that the result from the AR model be expressed using a natural language
expression. Formally, the natural language expressions of the aggregation measures are denoted as
S(qi(Lg)) and S(A ¢(qi)). where S( ) represents the conversion of the measure to a linguistic parameter. In
the case of g, the numerical quantity is directly associated with the set that has the highest DOM at this
quantile. The name for this set is clearly the natural language expression to use for L. For example,
suppose that after N trials, the 0.9 quantile vector is

q*0=1[0,0,2,7,.1,0,0] .

Then qgy(Lg) = 0.7 — the DOM associated with {Unresolved}, and the natural language expression
associated with this quantile is:

The likelihood of a significant quantity of retained gas at the 0.9 quantile is unresolved.

More precisely, given the PDFs for the primary inputs and the particular AR model used, the probability
is 0.9 that the likelihood of a significant quantity of retained gas is unlikely or unresolved.
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The centroid is calculated using the membership functions shown in Fig. 3-24, and it is natural to use
these functions to obtain S((A¢z(q;)). The logical natural language expression for Lg based on the centroid
is the set in which it has the maximum DOM. For example, if A;,;,(0.9) = 0.55, then the likelihood set with
the greatest DOM is {Unresolved) and, as before, the result of the evaluation would be expressed as:

The likelihood of a significant quantity of retained gas at the 0.9 quantile is unresolved.
Although S(q;(Lg)) and S(Ax(q)) are expressed linguistically, neither one is considered to be fuzzy.

Both approaches to calculating statistics for Ly and for obtaining the associated natural language
expressions are useful. The quantile vector approach provides valuable information on how often the
various rules in the rule bases “fire” as the quantile changes. One disadvantage associated with this
" approach is that the dispersion associated with PDF(L;) is not well-represented. For example, consider
the vector

q*90 = [0,0,.95,.95,.96,0,0] .

In this case, the operations above would lead to a “quite likely” result when an evaluation of “unre-
solved” would be appropriate. Because of the tendency for multiple elements in the quantile vector to
approach 1.0 at high quantiles, this problem is commonplace. The centroid method loses information on
the relative growth of membership in the likelihood sets but provides an easily understood measure for
estimating statistics and can be transformed back into a natural language expression in a straightforward
manner. In Sec. 4 we discuss statistics calculated using both techniques.

The final step in the evaluation process is to compare the natural language expression with some
criterion that classifies the tank. That is, we infer the classification of the tank based on the result from the
inductive logic structure. This step is an example of a very simple decision model and is the same
whether the quantile vector or centroid measure is used. Only the centroid measure will be discussed
here. Logically, if S(A x(q)) — “quite,” “very,” or “extremely likely,” then the conclusion of the AR model
is that the tank fails the screening process. This is consistent with the design of the logic structure and the
definition of the output form discussed in Sec. 3.1. Similarly for the “unlikely” expressions, we conclude
that the tank passes and that if S(A;(q;)) — “unresolved,” then the tank requires further study. These
statements are simple implications with S(A;((q;)) as the antecedent and can be summarized as follows.

If S(A ¢(q;)) is “Extremely Unlikely,” “Very Unlikely,” or “Quite Unlikely,” then the tank passes the
screening at the g; quantile.

If S(Ax(q)).is “Extremely Likely,” “Very Likely,” or “Quite Likely,” then the tank fails the screening
at the q;quantile.

If S(Ax(q)) is “Unresolved,” then there is insufficient information to classify the tank at the g;
quantile.

In practice one might prefer to use different rules for classification based on degree of conservatism
considerations. However, note that the classification decision rules are independent from the evaluation
logic structure.

3.8. Summary ,
In this section, we presented the complete AR modél used to illustrate the application of the method
to FGWL screening. The starting point is a specification of the scope of the evaluation and the form in
which the evaluation is to be expressed. We limited ourselves to an evaluation of gas retention and
specified the output, Ly, as the likelihood of a significant quantity of retained gas. The logic structure
reflects many of the considerations in the current screening methodology with respect to retained gas.




However, there are significant differences as well, and their influence on example screening results will
be discussed later. A universe of discourse, used to represent the element of evidence as a linguistic
variable, has been defined for each input to the logic structure. Fuzzy set membership functions were
specified to allow conversion of numerical data to the corresponding sets and the technique used to
specify set membership for qualitative inputs was described. The relationship between pairs-of input
parameters and the inferences to be drawn from them is defined explicitly using an implication rule base.
The implications are forward-chaining, and at each branch, we specify a consequent, its own universe of
discourse, and the specific implications that relate it to its antecedents. This process occurs in parallel for
each of the three major logic modules used to evaluate the likelihood of a significant quantity of retained
gas based on gas volume predictors, waste characteristic enablers, and GRE indicators. These modules
yield the three direct antecedents used to infer the aggregate retained gas likelihood, L;. Monte Carlo
simulation is used to estimate the statistical properties of measures for L;. These measures can be trans-
lated into natural language expressions that are the antecedents in a simple rule base used to classify the
tank. A tank can pass or fail the screen or there may be insufficient information to allow a definitive
evaluation so the tank status is unresolved. The mechanics of implementing this pilot AR model are
discussed in the next section.




4.0. IMPLEMENTATION OF THE APPROXIMATE-REASONING MObEL

The screening model described in Sec. 3 is implemented as a computer program written in the C
programming language. The fuzzy rules are evaluated using a modified version of the commercial
software package FuzzyCLIPS by Togai InfraLogic, Inc. An overview of the program is given in Fig. 4-1;
the basic structure of the computer implementation is as follows.

Read in data describing the inputs in the algorithm
Read in the fuzzy rule bases
For each trial in the Monte Carlo simulation:
— Select each input from the appropriate distribution
— Propagate the membership values through the logic structure using the implication rule
bases
— Defuzzify the membership values for the aggregate FGWL likelihood, Ly
-~ Place Ly in the appropriate bin
—~  Write all values selected from distributions, intermediate membership values, and.crisp
value of Ly to a file
e Create and store the PDF and cumulative probability distribution function (CDF) from the
stored values of L;;
e Post-process with a Microsoft Excel spreadsheet to generate percentile statistics and plots of
the PDF and CDF

These aspects of the program are described below.

Monte Carlo Trial

Input Fire Compute Compute
Descriptions Rule Bases LF Centroid W(Lp)

Inference
Rule Bases Sample Results

Statistics | Create
Graphics “*— PDF and CDF

:

Determine
Evaluation
Result

Fig. 4-1. Overall structure for the AR model computer program.



4.1. Reading Input Data
The inputs to the inductive logic structure were discussed in the previous section. Most of these

inputs are supplied directly. An example of a directly supplied input is the waste temperature, T. It is
described by a Gaussian distribution with a given mean, standard deviation, and upper and lower
truncation limits. Other inputs to the logic structure are calculated from intermediate values. For
example, the volume of the solids, Vg, is calculated from the salt-cake volume, V., and the sludge
volume, Vp: Vg = V¢ + Vp; Ve, and Vy, is described by two different distributions.

Table 4-1 lists the basic parameters used in the screening algorithm and shows the direct inputs to
the logic structure that they affect. It also lists the type of input, (either a point value or a PDF),
which rule the input is used in, the associated figure in Sec. 3 describing the membership functions for
that input, and any equations that are used to calculate a primary input to the logic structure.

Table 4-1
Summary of Input Specifications for AR Screening Model

Input to Typeof | Inputsto Logic Rule Base | Membership Function
Algorithm Input Structure (Table) Definition (Figure) | Equations
Pg Point P 3-1 3-5 3-2
R, PDF R, 3-1 3-5 -
S, PDF S, 3-2 3-5 3-1
Lmn Point fmn 3-3 3-5 3-2
Ie Point I, 3-3 3-5 3-2
.. Point Ah 3-11 35 33
Ma 3-10 3-5 3-4
M; 3-10 3-5 3-5
Rgimean Point Ah 3-11 3-5 3-3
Mg 3-10 3-5 3-4 "
M 3-10 3-5 3-5
Ahg, PDF Ah 3-11 3-5 3-3
Mg 3-10 3-5 3-4
FI Ahg PDF Ah 3-11 3-5 3-3
M; 3-10 3-5 3-5
Point Ah 3-11 3-5 33 |
Viimean Mg 3-10 3-5 3-4
M 3-10 3-5 3-5
A\ PDF Fr 3-15 3-11 3-6
F; 3-18 3-13 3-9
Vy 3-19
Vg PDF Vg 3-18 3-13 -
Ve PDF E; 3-15 3-11 3-6
F; 3-18 3-13 3-9
D 3-18 3-13 3-8
Cu 3-34 3-23 3-10
Vp PDF Fr 3-15 3-11 3-6
F; 3-18 3-13 3-9
[\ 3-18 3-13 3-8
3-34 3-23




Table 4-1 (cont)

Typeof | Inputsto Logic Rule Base | Membership Function | - .
Algorithm Input Structure (Table) Definition (Figure) | Equations
& PDF Fp 3-15 3-11 3-6
F, 3-18 3-13 3-9
& 3-18 3-13 3-8
@, PDF - Fg 3-15 3-11 3-6
F, 3-18 3-13 - 39
o 3-18 3-13 3-8
Faw Point Focw - - 3-7
gr Point q”’ 3-15 3-11 —
T PDF T 3-14 3-11 f
Il S PDF S 3-15 3-26 -
Co PDF Co 3-14 3-11 -,
3-20
C, PDF C, 3-25 3-18 -
X, Point X, 3-25 - -
N, PDF N, 3-26 3-18 -
@) PDF 8] 3-25 3-18 -
| IES Point Xo 3-25 - -
I No PDF No 3-26 3-18 -
f  &h PDF 5h 3-29 3-22 - |
" N Point N 3-29 - -
30 Point 50 3-30 - -
Nss Point Nsg 3-30 - -
x Point X 3-32 3-22 - i
Chtmean Point Cy 3-34 3-23 3-10 “

4.2. Reading the Fuzzy Rule Bases
Each of the rule bases described in Sec. 3 is stored in a separate file that is loaded by the program

for processing by the AR algorithm. The data format used in describing a rule base is shown in Fig. 4-2.
This is the input file for the rule base with the consequent implied by Ps; R?, Pgp, and S as the

antecedents; and the likelihood Lggs as the consequent. This logic branch is discussed in Sec. 3.3.1. A
brief explanation of the syntax follows.

The first line in Fig. 4-2, [df rules2 (PRP S) (LPRS)], defines the name of the rule base
[rules2] and the names of the inputs [PRP S] and outputs [LPRS] of the rule base. The next sections
[defUD] defines the universe of discourse for each input and output. Within this definition are the
specifications for each membership function [dm] belonging to that universe of discourse. The notation
for the set descriptors is the same as in Sec. 3. All the membership functions in this rule base are made
up of [1inear] segments. For example, the definition of the fuzzy set Very Negative (VN) of the slope
variable, S, is given by the line (dm VN (linear -2.0 1.0 -1.0 1.0 -0.25 0.0) ). The
values following linear are pairs of points describing the shape of the membership function. That is,
the set VN starts at a value of -2.0 with membership 1.0, then goes to -1.0 with membership 1.0, and
stops at -0.25 with membership 0.0 (see Fig. 3-5). After all of the universes of discourse are defined, the
rules are defined [dfr]. Therule (dfr rl (PRP is PRP-UD::H) (S is S-UD::P) => (LPRS is
LPRS-UD::U) ) translates as:

If Pgp is High (H) and S is Positive (P), then Ly is Unresolved (U) (see Table 3-4).
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(df rules2 (PRP S) (LPRS)

(defUD PRP-UD (-1.0 1.0)

(dm L (linear -1.0 1.0 0.05 1.0 0.3 0.0) )

(dm U (linear 0.05 0.0 0.3 1.0 0.5 1.0 0.7 0.0} )
(dn H (linear 0.5 0.0 0.7 1.0 1.0 1.0) )

)

{(defUD S-UD (-2.0 1.0)

(dm VN (linear -2.0 1.0 -1.0 1.0 -0.25 0.0) )

({dm SN (linear -1.0 0.0 -0.25 1.0 0.0 1.0 0.25 0.0) )
(dm P (linear 0.0 0.0 0.25 1.0 1.0 1.0} )

)

(defUD LPRS-UD (0.0 1.0)

(dm VU (linear 0.0 1.0 0.01 1.0 0.1 0.0) )
{(dm QU (linear 0.01 0.0 0.1 1.0 0.25 1.0 0.5 0.0) )
(dm U (linear 0.25 0.0 0.5 1.0 0.75 0.0} )
(dm QL (linear 0.5 0.0 0.75 1.0 0.9 0.0) )
(dm VL (linear 0.75 0.0 0.9 1.0 1.0 1.0} )

)

\

(dfr rl (PRP is PRP-UD::H) (S is S-UD::P)
(dfr r2 (PRP is PRP-UD::H) (S is S-UD::SN)
(dfr r3 (PRP is PRP-UD::H) (S is S-UD::VN)

(LPRS is LPRS-UD::U)
(LPRS is LPRS-UD: :QL)
(LPRS is LPRS-UD::VL)

vV Vv

= )
= )
= )
(dfr r4 (PRP is PRP-UD::U) (S is S-UD::P) => (LPRS is LPRS-UD::QU) )
(dfr r5 (PRP is PRP-UD::U) (S is S-UD::SN) => (LPRS is LPRS-UD::U) )
(dfr r6 (PRP is PRP-UD::U) (S is S-UD::VN) => (LPRS is LPRS-UD::QL) )
(dfr r7 (PRP is PRP-UD::L) (S is S-UD::P) => (LPRS is LPRS-UD::VU) )
(dfr r8 (PRP is PRP-UD::L) (S is S-UD::SN) => (LPRS is LPRS-UD::QU) )
(dfr r9 (PRP is PRP-UD::L) (S is S-UD::VN) => (LPRS is LPRS-UD::U) )

)

Fig. 4-2. Rule base for combining Pge and S to generate Lpgg.

Defining all the rules completes the definition of the rule base. Note that in this case, Pgp and Lpgs are
intermediate variables and the membership functions defined here are merely placeholders. They are
not used in the actual computations as defined here but, as explained below, are replaced dynamically.

4.3. Monte Cario Simulation

At the start of every MC trial, each input parameter is selected randomly from the appropriate
distribution, and the primary inputs to the logic structure are calculated. For parameters described by a
normal distribution, values are chosen using a routine from Press (1992). Values are chosen from uniform
distributions using the “random” routine in the standard C library.

The rule bases are evaluated in succession. For the first layer in the tree, the inputs are supplied
directly, and the result is a set of membership values for the output of these rules. For example, the
values for the total organic concentration, C,, and the waste temperature, T, are expressed as DOMs in
their respective universes of discourse and are input to the rule base represented in Table 3-14 to infer
the thermolysis gas generation potential, G;. The output from the evaluation of the rule base is a set of
membership values (High, Medium, Low) for G;. For successive sets of rules, these membership values
are passed on directly to the next rule as the input. For example, the rule represented in Table 3-16 for
combining Gy and Gy to generate the aggregate generation potential, G, is evaluated using the
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membership values for Gg and Gy. Because of this method of passing on membership values, actual
membership functions are not needed for intermediate variables in the fuzzy rule tree.

Modifications to the FuzzyCLIPS source code were required to implement this method of passing
membership function from one rule base to another. FuzzyCLIPS has a routine that accepts a rule base
and DOM values for the inputs and returns a point output value. This is the process of defuzzification
described in Sec. 3.7.2, and the point output is the centroid. This routine was modified to return the
membership values of the fuzzy sets representing the output instead.

Another required modification deals with the intermediate rule bases. For these rule bases, the
input is not described by a point value but by a vector of membership values. Because the routine that
evaluates the rule base requires a point value for the input, dummy membership functions are created.
- These dummy membership functions are constructed so that a point value of 0 produces the correct
membership in each set for that input. For example, to pass on the membership values of (Low = 0.4,
Unresolved = 0.5, High = 0.1) for Py, the following dummy membership functions are created.

(dm L (linear -1.0 0.0 0.0 0.4 1.0 1.0) )
(dm U (linear -1.0 0.0 0.0 0.5 1.0 1.0) )
(dm H (linear -1.0 0.0 0.0 0.1 1.0 1.0) )

These membership functions replace the ones loaded from the file described in Fig. 4-2. This is done by
excising the old membership functions from the rule base definition and loading the new definitions
from a file. Because of the way membership functions are linked to rules internally in FuzzyCLIPS, the
rules also need to be excised and reloaded.

As discussed in Sec. 3.7, it is necessary to compute measures for L; to obtain the statistics for the
Monte Carlo simulation. Calculation of the centroid measure, A5, requires the use of the membership
functions shown in Fig. 3-25. After the centroid is calculated, it is binned (200 bins covering the range 0
to 1), which completes one MC trial. A total of 2000 trials was run. For each trial, the values for each
input variable to the algorithm, the membership values for all the intermediate variables, and the
crisp value of Ly are written to a text file. This file is later processed with Microsoft Excel to generate
the statistics used in Sec. 5.

4.4. Creating and Storing the PDF and CDF of L;

The binned values of L; are used to estimate the PDF and a CDF for L;. These values then are
written to a text file that can be read by Microsoft Excel. Plots of the PDF and CDF of L; are generated
using Excel.

4.5. Implementation Issues

The AR program was run on an IBM PC 486 66-MHz computer with 16 MB of RAM to generate the
results discussed in Sec. 5. Running the entire algorithm for a tank requires about 6 h of computing time
for 2000 MC trials. Running just the barometric pressure logic submodule requires between 30 and 80 min
per tank, depending on the number of level sensors (one to four) that were available for each tank.”

It should be noted that the entire fuzzy rule tree is exactly equivalent to a single rule base with 40
inputs and one output (L) but containing 3*e45 (2.7¢10") rules.” Although it is impossible to actually
construct this huge rule base, it is possible to create smaller rule bases that combine three or four inputs.
For example, the rules applying to one instrument in the L; module, Fig. 3-4, can be combined into one

“More recently, some simulations were rerun on a PentiumPro 200-Mhz PC with 64 MB of RAM. The time
required to run the entire algorithm was reduced to a little over 2 h. The run time for the barometric
pressure module was reduced to between 8 and 22 min.

™ One input is described by five membership functions; one is described by four membership functions;
and the other 38 are described by three membership functions.
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rule base with four inputs (P, R% S, 1), one output (L;), and 81 rules. Using these condensed rule bases to
run the barometric pressure logic submodule resulted in about a 10% to 30% reduction in computing time.
This is primarily a result of reducing the amount of I/O associated with rewriting and reloading the
membership functions and rules for the intermediate variables. No significant reduction in computing
time was observed for the full algorithm. The benefits of reduced I/O were offset by the increased time
required to evaluate rule bases with up to 81 rules.

4.6. Equations Used in the Program
The equations used in the simulation are given below. normal(low, high, mean, sd) is a routine that

returns a random value from a normal distribution described by mean and sd and truncated at low and
high. uniform(low, high) is a routine that returns a random value from a uniform distribution between
low and high.

A = VTmean / h’mean

V81 = hslmean *A

V81low = V81 - VTr * V'l'sd

Vainigh = Var + Vo * Vg

0= Cyinean / { Vimean + Vemean )

hg; =normal( Veyows Veinign Vs, Vrea) / A
Ahg, =normal( Ahg; o, Ahgpigh, Ahgimeans Ahgiea )
AhE =normal( AhElowl Ahl-:highr AhEmeanl AhEsd )
VN =normal( VNlowr VNhight VNmeanl VNsd )

Ve =normal( Veows Venighy Vemean Vesa )

VD =normal( Vmowr VDhjghl VDmeanI VDsd )

@ =normal( Pciows Perighy Pemean Pesa )

@, =normal( Ppy,s Dprighy Pomeans Posa )

T =normal( Tyo., Trigh Tieans Tea )

S =n0rmal( S]owl Shjgh/ smeanr Ssd )

CO =normal( COlowl COhigh/ COmeanI COsd )

Cg =normal( 0.0, =, Cyrean Cgsa )

N, = uniform( N, Ngnign )

O =normal( Oy, Otigry Omeans Osa )

No = llrli.fom'l( NOlowl NOhigh )

8h =normal( 8hy,,, Shyg, Shpean, Shyy )

ah = uniform( Shlow, Shhlgh )

VT=VN+VC+VD

h=V./A

Ahy =h’-hg

Ah = Ahy, + Ahy, + Ahg
Mg, = | Ahg, / Ahy |
My =1 Ah; / Ahy, |

q"l:qT/VT*lOOO
Vi=®p ¥V + O * Ve * focw
Fr=(Vy+V;)/ Vy
FS=V1/(VT'VN)
O=(Pp*Vp+D*Vc)/ (Vp+Vc)

Cu=a*(Vp+V¢)




5.0. RESULTS OF THE APPROXIMATE-REASONING MODEL ALGORITHM
TESTING

To demonstrate the utility of the AR approach to FGWL screening, we considered two prbblems.

1. A complete tank evaluation in which the entire algorithm is used. This was done for two tanks,
U-106 and AW-104. U-106 is a single-shell tank with large sludge and saltcake layers. AW-104 is
a double-shell tank with over 1 million gallons of supernate. Both of these tanks had been
recommended for inclusion on the FGWL as a result of the Hodgson (1995) screening method as
applied by Barton (1996).

2. Partial evaluations using the barometric pressure correlation logic submodule for all of the tanks
on the FGWL and those flagged previously by Whitney but not currently on the FGWL.

Together, the results from these two problems illustrate the power of an AR model for screening and
provide a meaningful comparison of the approach used here with existing methods.

5.1. Results from Complete Tank Evaluations

In a complete evaluation, all of the major logic branches described in Sec. 3.2 are used. This requires
that the 40 parameters needed to calculate the primary inputs to the logic tree be specified. Both
quantitative and qualitative factors are input. Quantitative factors are used in the evaluation of the
predictor and enabler likelihoods, L; and Lg. Qualitative factors are used to determine the indicator
likelihood, L;. For testing purposes, these qualitative parameters were specified so that there would be no
clear evidence of GRE behavior. This is consistent with the data available for Tanks U-106 and AW-104.
Many of the quantitative primary inputs and several of the qualitative inputs are represented as random
variables. The approach to representing these variables in the model is described in Sec. 3.7 and in Sec. 4.

The results from a single MC trial for Tank U-106 are discussed in Appendix C. This discussion
explains in detail how the final aggregate likelihood is arrived at for a particular set of input parameters.
Readers interested in understanding what specific inferences are drawn from each implication rule base
in the model should read this appendix.

As noted above, for each MC trial, values for all of the primary inputs are obtained using random
sampling from the defining PDFs. A complete evaluation is carried out using these values. This
constitutes one trial; 2000 trials were used in the simulations for Tanks U-106 and AW-104. In this
section, we are concerned primarily with a discussion of the statistics associated with the Monte Carlo
simulations, the natural language expressions for the statistical measures, and the final screening
classification for the tanks. Recall from Sec. 3.7 that two approaches are used to calculate statistics for Lg.
In the first, we estimate PDFs for the DOMs in each set used to describe L,

PDF(Lg) = [PDE(Y(S)i=1,7)] , (5-1)
and use the vector

a* = [a18)j =17 - | 5-2)

as a representation for the i quantile of L. In the second approach, we use the centroid value, Az and
estimate a PDF for it as well from the simulation. The i quantile for the centroid is A, #(q;). Means,
standard deviations, and the CDFs also are computed. We will refer to these two approaches to
calculating statistics as the vector measure and centroid measure.

5.1.1. Evaluation for Tank U-106. Statistics for the aggregate likelihood, Ly, computed for both the
membership vector and centroid measures are given in Table 5-1 for Tank U-106. These include the 0.25,
median, 0.75 and 0.95 quantiles; the mean; and the standard deviation. Also shown are the corresponding




Table 5-1
Statistics for L. Generated in the Evaluation of U-106 from a Monte Carlo Simulation

with 2000 Trials
Membership Vector Measure ~ Centroid Measure
Statistic Degrees of Natural Screening | Centroid Natural Screening
Membership Language Result Language Result
(EU,VU,QU, Expression Expression
U,QL,VLEL)
Median, {0,0,0,.07,.5,.25,0} | Quite Likely Fail 72 Quite Likely Fails
905
q0.25 {0,0,0,0,.43,.16,0} | Quite Likely Fail 62 Unresolved | Insufficient
Evidence
q0.75 {0,0,0,.44,.53,.29,0} | Quite Likely Fail 74 Quite Likely Fails
905 {0,0,0,.55,.56,.5,0} | Quite Likely Fail 76 Quite Likely Fails
u Mean {0,0,0,.19,.44,. 24,0} | Quite Likely Fail 68 Quite Likely Fails
Standard | {0,0,0,22,.16,.13,0} — = 08" — —
Deviation!

natural language expressions for the result at each quantile and the mean and the screening result
obtained using the criteria given in Sec. 3.7.3. The evaluation result for this tank is quite clear—Tank U-
106 fails the pilot AR model screen at the median and for larger quantiles. Note also that for gy, the
DOMs are almost the same for {Unresolved}, {Quite Likely}, and {Very Likely}. This tendency for more
than one set to have relatively high membership is the main reason for calculating the centroid statistics.

Figure 5-1 shows the CDF for A(Lg). Note that between the median and the 0.95 quantile, g5 the value
of A(Ly) barely increases from 0.72 to 0.76. This indicates that for this tank, the evaluation result is not
very sensitive to the upper tails of the input PDFs. It should be noted that any such conclusions are
subject to the validity of the logic rules as well as the PDFs and membership functions used for the inputs
to the logic structure. Here all of these classes of objects as well as the logic structure itself are intended
for testing purposes only.

Insight into why this result is inferred from the evidence can be seen by examining the degree of
membership vectors from the primary logic modules.* This can be done at any quantile. We use the
median statistics, shown in Fig. 5-2, as a reasonable approximation of a best-estimate evaluation (Myers
and Booker 1991).** As noted earlier, the indicator input parameters were chosen to provide no positive
or negative indications of GRE behavior. Therefore, the aggregate likelihood is inferred only from the
predictor and enabler logic modules. In this case, the component likelihoods in the predictor module—
the barometric pressure and long-term level change likelihoods—have only large DOMs in {Unresolved}.
However, the waste characteristics are such that the potential for gas retention is inferred to be high, and
the gas generation potential also is judged to be significant. This results in an enabler likelihood with the
largest membership by far in {Quite Likely}. The convolution of these likelihoods leads to membership
for L in {Quite Likely} of ¥ = 0.5 and in {Very Likely} y = 0.25.

*The details of the evaluations carried out in the three logic modules are given in Appendix C.

“Readers familiar with the min-max rule will notice that the DOM values are transmitted only
approximately across a logic junction. This is because the statistics for each likelihood vector measure are
computed separately.
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Fig. 5-1. Cumulative distribution function for the centroid measure of L obtained for the MC

simulation of Tank U-106 with the AR model.
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q*s0 = {0,0,0,.07,.5,.25,0}
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Fig. 5-2. Median statistics computed for Tank U-106.
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5.1.2. Evaluation for AW-104. We performed a complete evaluation for Tank AW-104 as well. The
statistics for the vector and centroid measures for L; are given in Table 5-2. For this tank, the centroid
measures are A;r(gso) = 0.29 and A F(qes) = 0.40. The natural language expression for both results is “quite

unlikely,” and the tank passes the screening criteria at these confidence levels. The CDF for MLy) is

shown in Fig. 5-3.
Table 5-2
Statistics for L Generated in the Evaluation of Tank AW-104 from a Monte Carlo Simulation
with 2000 Trials

Membership Vector Measure Centroid Measure
Statistic Degrees of Natural | Screening | Centroid Natural | Screening
Membership | Language | Result Language | Result
Expression Expression
Median, |1{00,.5,.12,0,0,0 Quite Pass 29 Quite Pass
d0.5 } Unlikely Unlikely
" q0.25 {0,0,.5,.06,0,0,0 Quite Pass 26 Quite Pass
} Unlikely Unlikely
q0.75 {0,.22,.54,.2,.06 Quite Pass 33 Quite Pass
0,0} Unlikely Unlikely
q0.95 {0,.53,.56,.50,.1 Quite Pass 40 Quite Pass
5,0,0} Unlikely Unlikely
" Mean, |{0,.12,46,.16,0| Quite Pass 29 Quite Pass
4,0,0} Unlikely Unlikely
Standard | {0,.20,.13,.14,.0 — —_ .07 —_ —
Deviation 5,.02,0}
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Fig. 5-3. Cumulative distribution function computed for A(L:) for AW-104.




Figure 5-4 shows the propagation of the DOM vectors for the median statistics. Although both L,
and L; have non-zero DOMs only in {Unresolved}, the enabler likelihood has a median degree of
membership in {Quite Unlikely} of ¥(L;,QU) = 0.55. According to the logic rules used here, this has a
strong influence on the final result. The median vector measure for the aggregate likelihood is q*s, =
{0,0,.5,.12,0,0,0}. Note that for both tanks, the classification is shifted from “unresolved” by the enabler
module inferences.

In calculating the centroid measure for Ly we used the asymmetric membership functions shown in
Fig. 3-25. Recall that these functions were chosen to illustrate how output membership functions can be
specified to incorporate degree-of-conservatism considerations. We also have calculated centroid
measures using the symmetric membership functions shown in Fig. 5-5. Table 5-3 compares the results
using the two different membership function specifications. The use of symmetric functions increases the
" centroid measure for L slightly. The effect is to change the natural language expression for Ly from
“quite unlikely” to “unresolved” at the 0.95 quantile. Note that the membership vector measure is
unaffected by the change in membership functions for L;.

{0,0,.72,0,0}

L
{0,0,.58,0,0}

Lp

Lah
{0,0,.65,0,0} {0,.54,.12,0,0}
LPE

{0,.55,.09}

R
{0,.55,.09,0,0}

Le
9*50 = {0,0,.5,.12,0,0,0}

G
{.84,0,0,0} ALF(950) = 0.29

{.5,0,0,0}
Lpw

{0,0,0,.5,0,0,0}
L

Cm
{0,0,.38,.62}

Fig. 5-4. Median statistics computed for Tank AW-104.
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Table 5-3

Comparison of Centroid Measures Using Different Membership Functions

" Asymmetric Centroid Measure

Symmetric Centroid Measure “

Statistic | Centroid Natural Screening | Centroid Natural Screening
Language Result Language Result
Expression Expression
" Median, g5 29 Quite Unlikely Pass 34 Quite Unlikely Pass
“ Jozs .26 Quite Unlikely Pass 30 Quite Unlikely Pass
" qos 33 Quite Unlikely Pass .38 Quite Unlikely Pass
Joss 40 Quite Unlikely Pass 45 Unresolved Insuf-
ficient
Evidence
" Mean .29 Quite Unlikely Pass 34 Quite Unlikely Pass
Standard 07 — — 07 — —
Deviation
EUVU QU U QL VLEL
0 =t i

Aggregate Likelihood, Lg

Fig. 5-5. Symmetric membership functions for L.

5.1.3. Discussion of Full Tank Evaluations. It is interesting to compare these results for Tanks U-
106 and AW-104 with Hodgson'’s evaluation (summarized in Table 5-4). Hodgson selected 25% of LFL as
his screening threshold and uses the long-term surface-level rise and the barometric pressure slope to
obtain two separate estimates for the gas concentration in the dome space (see Sec. 2.2). In the case of the
barometric pressure correlation-based estimate, the level sensor that gives the highest gas concentration is
used.” Tank AW-104 fails both tests and Tank U-106 fails the surface-level rise screen.

Direct comparisons of the Hodgson results and the test evaluations presented here are problematic.
Our approach incorporates most of the primary inputs used by Hodgson but evaluates them quite
differently. However, several points can be made based on a very rough parallel between the gas
concentration estimates and specific component likelihoods.

“If only one sensor fails the Whitney flag, then the gas concentration based on that sensor is used.
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Table 5-4
Screening Results from Hodgson

Surface Level Rise Model | Barometric Pressure | Sensor used for
Tank Judgment (% LFL) Model (% LFL) BP Model

AW-104 Fail , 127 134 FIC
U-106 Fail 37 20 FIC

Both tanks fail the Hodgson screen based on level rise, which we denote as LFL,,. In our analysis of
Tank AW-104, the vector measure at the median for L, is q*;, = {0, 0, .65, 0, 0}.t That s, there is only
membership in the unresolved fuzzy set. For this tank, the effect of the correction for evaporation is
large, with ¥(Mg, High) = 1. The logic rule for the quality Q always evaluates to “poor” in this case;
therefore, L,;, can have membership only in {Unresolved} regardless of the numerical value for Ah (see
Table 3-11). The same result occurs for Tank U-106 except that the correction for the pre-1981 level is the

determining factor. Thus, it can be seen that the pilot AR model judges the long-term level data for these
tanks to be inadequate to allow any strong inference to be made.

The approach taken in the current work with the barometric pressure-level correlation can be viewed
as an extension of that in Whitney (1995). In addition to the fraction of negative slopes probability, Ps, we
use two other measures, the regression coefficient, R?, and the level-pressure slope, S, calculated by
Whitney. An additional explicit judgment is made about the quality of the inference to be drawn from
this evidence by also considering the number of intervals from which these statistics were generated.*
Further, the barometric pressure logic submodule incorporates the evidence from all available level
sensors into an aggregate likelihood.

In Hodgson, the volume of gas is calculated using a simple linear model for pressure and height. The
volume used in screening is based on the instrument with the largest negative slope that failed the
Whitney flag, Ps < 0.05. Thus, although S is used in this approach, instrument quality is not considered,
and a mechanism for reconciling conflicting data is not implemented.

For Tank AW-104, Whitney calculates Pg= 0.0 and 0.34 for the FIC (f) and manual tape (m),
respectively. There is no ENRAF (e) or neutron log (n) data. This means that the tank fails the Whitney
flag based on the FIC, and a gas concentration based on a slope of S = -0.20 is calculated.”™ The
flammable gas concentration calculated using this slope is above the threshold defined in Hodgson, so
the tank fails the screen. In the evaluation performed with the AR model, the median vector measures
based on the FIC and MT are g*;,(Lg = {0, 0, .88,0,0} and q*5(L,,) = {0, .44, 0, 0, 0}, respectively. The
primary consideration here is L. Although P is very low, the evaluation algorithm also considers the fact
that the linear regression coefficient is small, as is the slope. According to the AR rule bases, the
likelihood to be inferred from this set of values should have only a non-zero DOM in {Unresolved}. This
is indeed the case, q*5(Lg) = {0,0,.71,0,0}. We can consider the information available from the MT as of
insufficient strength to change this evaluation.

Tank U-106 passes the Whitney flag using the ENRAF data but fails when either the FIC or NL data
are used. The gas concentration is calculated using the FIC with a slope of S = -0.15.*** Figure 5-6 shows

T The degree of conservatism in the estimate for LFL,,, is difficult to estimate, and we arbitrarily chose to
compare it with the median likelihood estimate.

"Note that although P includes the number of intervals directly, the other statistics do not. Also,
although the probability distributions for R? and S provide information about the variability of these
statistics, they provide no direct information on how many data points were used in their construction.
"This slope value represents the 0.75 quantile. The reason for using this quantile is not clear.

™It is unclear why the slope for the neutron log was not used as the absolute magnitude of the slope for
this instrument is greater.
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Fig. 5-6. Median vector statistics for barometric pressure logic submodule for Tank U-106.

the median vector measures calculated for the barometric pressure submodule. Only non-zero
membership in the unresolved set is seen for all three instruments. In the case of the FIC, the low value of
Pg = 0.002 is given less weight because both R? (0.17) and S (-0.07) are small. For the ENRAF, the small
number of intervals drives the evaluation toward {Unresolved}. The neutron log results are particularly
interesting. In this case, we have P = .035, and the median values for R? and S are 0.237 and -0.662,
respectively. The vector measure of retained gas inferred from these three measures is q*s,(Legs ) = {0, 0,
.1, .46,0}. This likelihood is relatively high. However, the number of intervals is small (I = 8), so
according to the logic incorporated in the AR rule base (Table 3-5), the result must be relaxed toward
unresolved. The median vector measure inferred from the individual sensor vectors is q*s5,(Lg) = {0, .03,
.6, .04, 0]. Thus, the result obtained here is considerably different from the conclusion reached in
Hodgson for this tank based on the barometric pressure data.

5.2. Evaluation of Barometric-Pressure-Based Likelihood Logic Submodule for Selected Tanks

Because of time constraints, complete evaluations could be performed only for two tanks using the
AR model described here. This was not considered a serious problem because the rules and membership
functions used are intended for testing purposes only. However, the barometric pressure likelihood logic
submodule was developed first and consequently is more mature. In addition, its relationship to
Whitney’s work, as discussed above, is reasonably clear. Therefore, we decided to carry out an
evaluation of L for the 25 tanks on the FGWL as well as the additional 37 tanks that were flagged by
Whiiney during his study. Of these 37 tanks, 24 originally were recommended by Barton for inclusion on
the FGWL.* We consider these three sets of tanks separately below.

5.2.1. Membership Functions for Lg. In a complete tank evaluation, the only measure available for
computing statistics for Ly is the membership vector. To use the centroid measure to evaluate tanks with
just the barometric pressure logic submodule, it is necessary to specify membership functions for Ls.
These are shown in Fig. 5-7 and correspond to the symmetric membership functions used earlier for L in
Fig. 5-5 but without the “extremely” hedges.

" Tank BY-106 was not flagged by Whitney but was included on the Barton list.
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Fig. 5-7. Membership functions for L.

The screening criteria to which these expressions are compared are the same as for L. For values of ML)
that correspond to the natural language expression “unresolved,” an additional classification step was
used. It was found that this classification could be subdivided based on either the shape of the CDF or
the magnitude of the standard deviation. Figure 5-8 shows the two distinctive CDF curves that can occur
for tanks that are classified as “unresolved.” For the curve labeled UP, corresponding to the expression
“unresolved with poor evidence,” it can be seen that for small values of cumulative probability P, the
value of ML3) is 0.5. This is also the value at the median. Logically, this represents the case where the
evidence is judged to be of insufficient quality to allow a judgment regardless of the numerical values of
the primary inputs. For the curve labeled UG, “unresolved good evidence,” the value of A(L;) depends
on the distributions of the primary inputs. In this case, the evaluation is that the evidence is acceptable
but allows no definitive inference of the likelihood of a significant quantity of retained gas to be drawn.
The shape of the cumulative distribution in the UP case implies a small value for the standard deviation,
G. Therefore, by examining the results, it is possible to classify tanks as being in UP with the simple
threshold criterion that a tank is a member of UP if ¢ < 0.025.

Cumulative Probability, P
(4]

0 5 1
MLF)

Fig. 5-8. Shapes of cumulative probability distributions for A, for tanks classified “unresolved, poor
evidence” (UP) and “unresolved, good evidence” (UG). )
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5.2.2. L for Tanks on the FGWL. Table 5-5 lists the tanks on the FGWL. Also shown are the
median and 0.25, 0.75, and 0.95 quantiles and the mean and the standard deviation for ;5. Values of A3
at the median range from 0.23 to 0.79 and from 0.33 to 1.00 at qe5. Also shown is the result of the
comparison with the screening criteria for A,z but applied only to the centroid computed with the
barometric pressure logic submodule.

Classification of a tank depends on the quantile of the CDF used. Table 5-6 shows the groupings
based on the median and 0.95 quantiles for Ly. The total number of tanks is fixed, and the number of
tanks classified as UP is not a function of the quantile considered. Thus, it can be seen in this instance
that the effect of increasing the quantile from 0.5 to 0.95 is to move six tanks from UG to F. Twenty-one of
the FGWL tanks also were flagged by Whitney. The logic rules and membership functions used in testing
the AR algorithm make it somewhat more difficult for a tank to be classified as failing the screening. In
the absence of relatively strong evidence for gas retention, a tank will be placed in one of the unresolved
sets. Table 5-7 shows the four tanks not flagged by Whitney along with the current evaluation results.
For Tanks S-112 and T-110, both methods yield the same result, whereas for Tanks AX-101 and SX-109,
the current evaluation is to classify these tanks as unresolved.

Table 5-5
Results for L; for the Tanks on the FGWL from Monte Carlo Simulations with 2000 Trials

e

Centroid Quantile Mean Std. Classification*
Deviation
025 | 0.50 | 0.75 | 0.95 Gso Cos

0.500 | 0.500 | 0.500 | 0.513 | 0.502 0.011 upP
0.547 | 0.641 | 0.755 | 0.884 | 0.659 0.131 F

0.466 | 0.500 | 0.517 | 0.606 | 0.479 0.095 uG
0.500 | 0.500 | 0.540 | 0.673 | 0.518 0.078 UG
0.500 | 0.500 | 0.502 { 0.568 | 0.500 0.041 UG
0.356 § 0.500 | 0.500 | 0.562 | 0.457 0.076 UG
0.413 | 0.500 | 0.514 | 0.589 | 0.466 0.096
0.660 { 0.786 | 0.879 | 0.963 | 0.767 0.136
0.688 § 0.759 | 0.803 | 0.840 | 0.737 0.086
0.202 | 0.228 | 0.235 | 0.333 | 0.218 0.076
0.500 | 0.500 | 0.507 | 0.563 | 0.511 0.024
0.500 | 0.565 | 0.609 | 0.712 | 0.573 0.066
0.644 | 0.776 | 0.887 | 1.000 | 0.766 0.154
0.528 | 0.600 | 0.729 | 0.892 | 0.615 0.148
0.500 | 0.532 | 0.624 | 0.714 | 0.568 0.081
0.566 | 0.684 | 0.793 | 0.892 | 0.681 0.134
0.500 | 0.500 { 0.500 | 0.500 | 0.500 0.000
0.554 { 0.610 | 0.708 | 0.841 | 0.631 0.115
0.368 | 0.509 | 0.560 | 0.647 | 0.465 0.144
0.274 | 0.286 | 0.310 | 0.405 | 0.292 0.065
0.699 | 0.771 | 0.825 | 0.872 | 0.757 0.085
0.509 | 0.580 | 0.713 | 0.870 | 0.610 0.148
0.593 | 0.673 | 0.715 ] 0.797 | 0.669 0.073
0.500 | 0.500 ] 0.533 | 0.571 | 0.518 0.025
0.613 | 0.713 | 0.753 | 0.828 | 0.683 0.100

C o C
’n-u'\’l'l'l'ﬂ'U'Tlﬂ-U'ﬂTlﬂ'n'ﬂ-u'U'ﬂ'n

*F = Falil, P = Pass, UG = Unresolved, good evidence, UP = Unresolved, poor evidence




Table 5-6
Classification of FGWL Tanks Based on the L; Evaluation

Screening Group Median, gs
Pass 2
Fail 10

Unresolved, Good Evidence 9
Unresolved, Poor Evidence 4
Total 25

Table 5-7
Evaluation of FGWL Tanks Not Flagged by Whitney Based on Lg

Centroid Quantile Std. Classification
’ Deviation
0.25 | 0.50 | 0.75 | 0.95 9 | qe
0.356 | 0.500 | 0.500 | 0.562 0.076 UG
0.202 1 0.228 | 0.235 | 0.333 0.076 P
0.500 | 0.500 | 0.500 | 0.500 0.000 upP
0.274 | 0.286 ] 0.310 | 0.405 0.065 P

5.2.3. L for Non-FGWL Tanks Flagged by Whitney. Table 5-8 lists the L evaluation results for
the additional 37 tanks flagged by Whitney not currently on the FGWL. As noted above, 24 of these tanks
also were placed on the Barton list and considered for addition to the FGWL. Table 5-9 shows the
number of tanks in each group at the median and 0.95 quantile for the centroid measure. At the median,
only roughly 10% of the tanks flagged by Whitney fail the current evaluation. Note that this is also true
for the more restricted Barton list. At qg;, these fractions increase to 0.3 and 0.38, respectively.

Eleven tanks are classified as UP for the non-FGWL set. Ten of these are also on the smaller Barton
list. Table 5-10 shows the sensors available and the number of intervals used to calculate P;. Tanks in this
table fall into two categories: those that only have MT and NL data or those with a relatively small
number of FIC intervals together with both MT and NL data or with just NL data, also in small quantities.
For all of these combinations, it is difficult to generate a non-zero DOM in any likelihood set other than
{Unresolved}. In fact, non-zero membership in the “likely” sets can occur only if Pg, R?, and S are all in
good agreement. R? must have some degree of membership in {High}, and S must have membership in
{Very Negative]. This requirement was not met for any of the tanks listed in this table. The ability to
qualify evidence and to avoid classifying tanks as failing the screen at high quantiles when the evidence
is poor is an important capability of the AR method.

5.3. Summary

In this section, we have applied the evaluation algorithm using real tank data. A complete evaluation
using the entire expert system was carried out for two tanks. The interaction of the predictor, enabler,
and indicator likelihoods provides important information on how the various perspectives on tank
behavior influence the final conclusion. MC simulation was used to sample the body of evidence and
provide statistics for estimating the confidence one can have in the results. Both the membership vector
and the centroid measure provide valuable information about the flammable gas characteristics of a tank.
We also compared our results with existing WHC screening conclusions. Although the body of evidence
available in both cases is essentially identical, the techniques used to process the evidence, and therefore
the conclusions, differ. An important difference is that the AR model is designed to classify tanks as
unresolved if the evidence quality is poor or the inferences are contradictory. In the evaluation of the
Barton list using the L submodule alone, the current judgment is that the evidence for a number of tanks
is insufficient to reach a definitive conclusion.




Results for Lg for the Tanks Flagged by Whitney Not on the FGWL from -
Monte Carlo Simulations with 2000 Trials :

Centroid Quantile

Table 5-8

Std.
Deviation

Classification

0.25 | 0.50 | 0.75 | 0.95 s Ag;
A103 | Yes | 0.500 | 0.533 | 0.806 | 0.752 | 0.554 0.105] UG F
AW104 | Yes | 0.444| 0.500| 0.517| 0.602| 0.465 0121 UG F
AY101 | Yes | 0.310| 0.423| 0.452] 0.491| 0.377 0.113| UG UG
BX107 | Yes | 0.500] 0.569| 0.698{ 0.729] 0.592 0.0903| UG F
BY101 | Yes | 0.500| 0.500| 0.500| 0.500| 0.500 0.000] UP uP
BY102 | Yes | 0.500{ 0.500| 0.500| 0.537| 0.505 0.017| UP uP
BY103 | Yes | 0.500| 0.500| 0.500| 0.519] 0.503 0.013| UP uP
BY105 | Yes | 0.500| 0.500{ 0.500| 0.500| 0.500 0.001| UP uP
BY109 | Yes | 0.548| 0.671| 0.778| 0.907| 0.665 0.152 F F
C104 Yes | 0.414| 0.500| 0.514| 0.578| 0.462 0.101] UG e
c107 Yes | 0.500| 0.500| 0.551| 0.706] 0.527 0.075| UG F
$101 Yes | 0.500| 0.500| 0.500| 0.504| 0.501 0.003| UP upP
$103 Yes | 0.605] 0.687| 0.782| 0.874| 0.696 0.108 F F
S105 Yes | 0.257] 0.289| 0.289| 0.304| 0.273 0.032 P P
5106 Yes | 0.691| 0.825| 0.925| 1.000| 0.795 0.158 F F
5107 Yes | 0.500] 0.534| 0.622| 0.732| 0.560 0.105| UG F
S109 Yes | 0.154| 0.230| 0.256| 0.354| 0.198 0.108 P P
TX102 | Yes | 0.500| 0.500| 0.500] 0.519] 0.501 0.006] UP uP
TX111 | Yes | 0.500| 0.500| 0.500| 0.500| 0.500 0.000] UP uP
TX112 | Yes | 0.500| 0.500| 0.500| 0.539| 0.504 0013} UP UP
TX113 | Yes | 0.500{ 0.500| 0.500| 0.500| 0.500 0.000] UP uP
X115 | vYes | 0.500| 0.500| 0.500| 0.500| 0.500 0.000 uP UP
U102 Yes | 0.500| 0.510| 0.552] 0.599| 0.528 0.037| UG UG
U106 Yes | 0.399] 0.500| 0.534| 0.647| 0.467 0.114| UG F
AP105 [ "No [ 0.426| 6.500 0500 0.521 | 0.462 0.086| UG UG
No | 0.417] 0.500| 0.500| 0.500| 0.460 0.054| UG UG
No | 0.500| 0.500| 0.500{ 0.579| 0.492 0.058] UG UG
No | 0.369| 0.439| 0.461] 0.527| 0.409 0.099| UG UG
No | 0.162] 0.396| 0.421| 0.500| 0.328 0.159 P UG
No | 0.431| 0.500| 0.539| 0.658| 0.486 0.101] UG F
No | 0.500| 0.502| 0.595| 0.713| 0.543 0.091] UG F
No | 0.378] 0.476| 0.486| 0.496| 0.426 0.085| UG UG
No | 0.447| 0.479| 0.479| 0.500| 0.451 0.059| UG UG
No | 0.407] 0.500| 0.500| 0.525| 0.450 0.082] UG UG
No | 0.370| 0.492| 0.500{ 0.500| 0.440 0.073| UG UG

No | 0.351| 0.461| 0.500| 0.528| 0.423 0.099] UG

No | 0.500| 0.500 0.518] 0.502 UP

0.500

0.009




Table 5-9
Classification of Non-FGWL Tanks Flagged by Whitney Using L, Evaluations

Non-FGWL Barton List
Group Median s Median Jos

Pass 3 2

Fail 3 9
Unresolved, Good Data 20 3
Unresolved, Poor Data 11 10
Total 37 24

Table 5-10
Avallable Sensors and Intervals Used for Tanks Classified as UP in the Lg Evaluation

-] Intervals Used

Tank FIC Manual Tape Neutron Log
BY101 0 23 8
BY102 0 82 7
BY103 0 75 9
BY105 0 67 8
5101 29 3 8
TX102 0 11 7
TX111 0 16 8
TX113 0 16 8
TX115 0 15 8
TY103 20 0 8
U102 21 0 8
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6.0. CONCLUSIONS

In this report, we have proposed an approach to screening waste tanks for a significant quantity of
retained gas that differs considerably from previous methods. Our approach centers on an inductive
logic structure that specifies how the evidence collected on the tank is combined to yield an estimate of
the likelihood that the tank contains a significant quantity of retained gas. The evidence used in our
model includes quantitative measurements of waste and tank parameters as well as qualitative judg-
ments concerning data quality. These data were evaluated through logical rule bases to produce infer-
ences about gas retention. Typically, several pieces of related data are combined to make a number of
preliminary inferences about gas retention likelihood. All of the preliminary gas retention likelihood
inferences are aggregated to produce a final likelihood inference that considers the relative qualities
of the different data.

The idea behind our approach is the emulation of expert judgments. When asked to produce an
estimate of flammable gas retention likelihood, an expert would examine all the data he felt was
applicable. The expert would group the data into manageable segments from which he could make
inferences about gas retention. He then would weigh these inferences against each other, noting sup-
porting and contradictory inferences. He also would consider the relative strength and quality of the
different data and the inference models used to combine those data. Lastly, he would make a final
determination of gas retention likelihood.

Our method emulates an expert by first constructing a logic structure that models how the expert
collects, collates, and combines pieces of data to make an inference. The logic structure shows which
pieces of evidence are combined to make a likelihood inference. Our method also uses a set of specific
implication rules that use tank data as evidence to generate inferences about gas retention. Together,
the inductive logic structure and the associated inference rule sets provide an inferential structure that
uses the input data to produce an output that is a measure of the likelihood of significant retained gas
for any given tank.

In practice, the inductive logic structure and the rule sets should be constructed using the knowledge
of a group of flammable gas tank experts. The experts determine what data should be combined to make
individual inferences about flammable gas likelihood and how the individual inferences are weighted
to account for mutual contradiction/support and telative data quality. In this study, one of the
developers of the methodology was used as the expert source for the preliminary demonstration study
so that the extra complication of expert elicitation was not added to the developmental aspects of the
work. Much of the logic structure for combining evidence was based on the work of Hodgsen (1995).
Thus, this study represents an example of the techniques, not a final product.

The screening approach in this study differs from past approaches in several important ways. Our
approach explicitly defines the logic to be used during the screening process, whereas some past screen-
ing approaches have not defined all the logic used in their analyses explicitly. This provides a trace-
able path from the flammable gas likelihood back to the input data used in the inferences. The
approach includes both stochastic variation in measured quantities and qualitative judgments with
their associated fuzziness. This allows us to use more of the available data. Past approaches typi-
cally have used only stochastic variables in their formal analysis and have either ignored or treated
qualitative data in an ad hoc manner. To compensate for the use of less data, past approaches typi-
cally have been very conservative in their judgments and have tagged tanks as gas-retaining based on
very little and often questionable data.

The approach presented here explicitly differentiates between contradictory and poor data. With
this method, poor quality or sparse data provide an indication that the gas likelihood is unresolved
because of poor data. If the data are relatively good but show ambiguity in their results, then the
method returns a verdict of unresolved with good data. This distinction is important in determining
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how to resolve the ambiguity for a particular tank. For example, collecting more of the existing type of
data or using better instruments may be alternative approaches for determining flammable gas
retention for a tank that is “unresolved—poor data.” On the other hand, completely new types of data
may be required to determine flammable gas retention for a tank where the existing data are of good
quality but where the gas retention likelihood is unresolved because of contradictions between different
sets of data.

The output of this analysis is a clear distillation of the input data and the logic structure that
relates the various evidence. This output carries a considerable amount of both stochastic and quali-
tative information about the tank. The information can be compressed to a point-value statistic or
examined as a distribution when screening for the presence of retained gas.

The approach used in this study has a sound mathematical basis in the theory of approximate
reasoning. AR techniques are invoked to propagate tank evidence through inference models linked by
the inductive logic structure. Flammable gas screening is a natural area for applying these techniques
because of the inherent imprecision and the importance of qualitative judgments in this analysis. AR is
a mathematical field with firm theoretical foundations and is an active area of ongoing research and
expansion in both theory and application. We believe this application to be on the leading edge of the
envelope for the AR field.

In this study, the power and relative simplicity of the AR approach is demonstrated by applying it
to two problems: a complete evaluation of two tanks using a diverse body of evidence and the evalua-
tion of tanks currently on the FGWL along with additional candidate tanks using the barometric pres-
sure logic structure only. These analyses use actual tank data as input for our example inductive logic
structure and inference rule set. The results demonstrate the potential for reducing unnecessary conser-
vatism and identifying tanks with unresolvable status given the available evidence. The results also
show how, using AR techniques, considerable information on the uncertainty of both evidence and
knowledge of the experts can be retained in the final likelihood inference.

A new and powerful analytical approach to flammable gas screening has been demonstrated suc-
cessfully in this study. The next step in the development is to construct a logic structure and rule sets
based on a larger group of experts. This can be done with the techniques used here. It is our expectation
that the larger group of experts would identify more data sets from which gas likelihood can be
inferred. We also might expect some of the current logic to be modified to better capture the experts’
judgment concerning relative data quality and imprecision in qualitative judgments. The existing study
has demonstrated all the important components of an approximate reasoning approach to flammable
gas screening and only awaits the addition of further experts to the knowledge base for full
implementation.




APPENDIX A
BASIC CONCEPTS OF APPROXIMATE REASONING

The FGWL screening method described in this report is an application of approximate reasoning
(AR). This appendix provides a discussion of the concepts relevant to AR model development and shows
how the approach is based on set theory, classical predicate logic, and its extension, fuzzy logic. We
examine the extension of these concepts to construction of logic trees in forward-chaining rule-based
expert systems. We discuss the techniques available to evaluate the confidence one might have in the
output of such an expert system and show how these results are related to more conventional expert
judgment. This appendix also provides an introduction to the set-theoretic notation used throughout the
report.

AR is designed to provide a structure for making inferences under conditions of ambiguity and
imprecision; that is, in situations where one must resort to expert judgment and where assuring consistent
evaluation is difficult (Zadeh 1976, 1975a, 1975b). Consider for a moment the type of expert-based
evaluation required to reach some conclusion about a complex issue. Figure A-1 shows one possible,
greatly simplified, logic structure that an expert may use. The expert is provided with some body of
knowledge about the problem. He then performs some internal qualification of this data and groups it
into relevant sets that are used as input for various internal models that the expert has developed through
his experience. Note that the body of evidence may include the results of detailed code calculations so the
expert’s internal model may include his assessment of the applicability of the code models or the
confidence he has in the input for the problem at hand. The expert then performs some sort of weighting
of the results from his model and attempts to reach a tentative conclusion. This can be an iterative process.
If a conclusion can be reached, the expert also is normally asked to assign some confidence to his conclu-
sion. This can be expressed as a probability estimate or may be couched in more qualitative terms. We
refer to the conclusion along with some assertion of confidence in that conclusion as the expert judgment.

Various methods are available for expert elicitation; the reader should refer to Myers and Booker
(1991) for a detailed discussion. Regardless of the elicitation method, a common problem arises when the
expert is asked to make a summary judgment about a complex issue. In this case, it is extremely difficult
to frame the questions so that the elicitor can document the expert’s internal models and be sure that the
specified boundary conditions are being used. In other words, we may have an expert opinion but not be
sure that it is really for the problem of interest and not necessarily know how it was arrived at. This
difficulty becomes more acute as the complexity of the problem increases and as more experts are inter-
viewed. In the latter case, it is hard to confirm that all the experts have used a common set of data and
assumptions. There are also potential problems in aggregating the responses. Certain group techniques
such as Delphi attempt to get around these obstacles. However, it is our judgment that this cannot be
done in a robust and defensible manner for FGWL screening because of the large number of tanks to be
evaluated and the vast body of evidence that must be considered.

In an AR approach, the underlying framework is a logic structure that is used to order a chain of
inferences about a body of evidence. The elements of evidence are described using natural language
expressions that are consistent with the words an expert would use. These expressions are called lin-
guistic variables. Examples of the use of linguistic variables for the flammable gas body of evidence are
statements such as the following.

The barometric pressure-level fluctuation correlation is very strong
The radiolytic gas generation is quite low

Figure A-2 shows a simplified schematic for simulating expert judgment using an AR-based
approach. We start with the same body of evidence available to the expert. This evidence serves as the
primary inputs to the evaluation algorithm. The evidence is converted into linguistic variables, and to
draw consistent inferences, these variables are treated as sets. In this form, the formal mathematics of set
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Fig. A-1. Simplified schematic for expert judgment process to screen a tank.
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Fig. A-2. Simplified schematic for an approximate reasoning expert system to screen a tank.




algebra are available, and we can apply the formal logic operation of implication that lies at the heart of
any inference model. The AR model is a set of structured inference rules generated by a logic structure
that emulates the internal processes used by an expert in evaluating evidence and arriving at a
conclusion. The aggregate output of the inference module is a conclusion.

Monte Carlo sampling is used to obtain some measure of the confidence associated with this conclu-
sion. The body of evidence contains random variables that are represented by probability distribution
functions as well as “raw” expert judgment that may be aggregated using statistical models. Monte Carlo
sampling allows one to associate statistical measures with the tentative conclusion and thus render an
AR-based judgment that is the analog of the expert’s. In the remainder of this appendix, we briefly dis-
cuss the concepts used in Fig. A-2 and provide the background information needed for the development
of a detailed evaluation.

1.0. LINGUISTIC VARIABLES AND FUZZY SETS

The use of linguistic variables is best illustrated by example. Here we present a modified discussion
of that in Ross (1995). Suppose that we wish to group a collection of people according to their heights.
We define the collection of heights as the universe of discourse, H, and any individual height by h. In set
theoretic notation h € H, or h is an element of H. For our grouping, we wish to use the linguistic descrip-
tions “Tall,” “Average,” and “Short.” That is, we define three sets {Tall}, {Average}, and {Short} that are
contained within H Suppose that we know the heights fairly accurately, for example, to the nearest 1/4
in. We can define the characteristic heights for each set formally, for example,

he {Tall}iff h=6'0’
h e {Average} iff 5’ 6" <h< 6’0’
h e {Short} iff h <5 6”

Let the set D defined on H be D = {5’27, 5’4", 5'7”, 5'10”, 5'11-3/4”, 6’1 /4", 6”5”}. Then the intersection of
D with the three sets used to group heights is D N {Short} € {527, 5’4"}, D {Average} € {5'7”, 5'10”,
5'11-3/4”} and D n {Tall} € {6"1/4", 6'5"}. Note that for any h, we can say definitely whether or not it is
contained within the intersection of D and one of our three sets. Sets like this are referred to as crisp.
Membership in a crisp set, A, can be expressed using the characteristic function y:

x(xA)=1if xe A (A-1)
%(xA) =0if xg A

It can be easily seen that crisp sets are not well-suited to dealing with ambiguity and imprecision. For
example, suppose that H is the set of heights of all professional baseball or football players. The defini-
tion for the linguistic “Tall” given above might be reasonable for baseball players but not for football
players. It would be possible to have two sets of definitions, but this is not always practical. Also in our
example, h = 5'11-3/4” € {Average} whileh = 6"1/4” € {Tall}. This occurs when a crisp threshold is used.
In practice, we often want to avoid such sharp distinctions and might want to think of both people as
“rather tall.” Here again we could define a new set, for example, between 510" and 62", but the basic
problem remains. Imprecision also arises when our judgment of the heights is more subjective, as when
we classify by eye. It is unlikely that we could differentiate between two people very close to 6’0" in
height. In this case, it is clear that our crisp sets do not accurately reflect the actual judgments being used
to assign each person to membership in the three sets.

To avoid these problems, Zadeh introduced the concept of fuzzy sets (Zadeh 1965). An element can
have partial membership in a fuzzy set. In our example, when using fuzzy sets, h can belong to both
{Tall} and {Average}, h e {Tall} and h € {Average}. Membership functions such as those shown in
Fig. A-3 for the example problem normally are used to convert a quantitative value to membership in
fuzzy sets. This is referred to as fuzzification.. The degree of membership (DOM) for an object x in a set A
is denoted as p(x,A) and by definition 0 < pu(x,A) < 1. In our example for h = 6’1/4”, u(6'1/4”,Tall) = 0.55
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Fig. A-3. Membership functions for height for the example problem.

and p(6'5”,Tall) = 1.0. This approach explicitly provides for ambiguity. Suppose that h has DOMs
p(t,Short) = 0, p(t, Average} = 0.4 and p(t, Tall) = 0.6. We will denote this by the vector y(h): {0, 0.4, 0.6}
and use the notation he { Short, Average, Tall} to indicate the fuzzy sets in which h can have
membership. This class of sets, { Short, Average, Tall} is defined on the universe of discourse H, which in
this case is all possible heights for a person. The vector y(h): {0, 0.4, 0.6} corresponds to someone
approximately 6’1" tall. We can think of this individual as “rather tall.” Note that the DOMs change
smoothly as we change the height under consideration—in this case, as the height decreases, membership
in {Tall} goes down and membership in {Average} increases. Below 510”7, membership in {Short}
becomes non-zero, whereas p(h : h<5’10”, Tall) = 0. Because there are no crisp thresholds, the
combination of linguistic variables and fuzzy sets is a powerful tool for drawing inferences.

Several additional technical points should be mentioned briefly.

1. All of the operations defined for crisp sets also are defined for fuzzy sets. For example, the union
operation, A U B is defined for fuzzy sets as xe A U B = max(u(x,A), i(x,8)). This follows the crisp
rule xe A U B = max(}(xA), x(xB)). Similarly, the intersection is xe A N B = min(u(x,A), (x,B)).

2. One important difference between crisp and fuzzy sets is the law of the excluded middle. For
crisp sets, the intersection of a set and its complement is empty: A N A’ = &. However, for fuzzy
sets, this is not true: AN A’ =3 . A DOM p(x,A) = 0.5 means that x has equal membership in A
and in its complement.

3. All of the membership functions used here are either triangular or trapezoidal in shape. This
satisfies a requirement that they be convex. Also, in this report, membership functions are
defined so that any element x for which membership functions are defined explicitly for a uni-
verse of discourse xe {A1,A2,A3,A4,....} can have membership in at most two of the sets defined
on this universe. This is definitely not a general requirement for working with fuzzy sets and was
adopted here for simplicity. For further details, refer to Ross (1995) or Kosko (1992).

2.0 FUZZY SETS AND INFERENCE

Sets and set operations combined with the elements of classical logic provide a formal structure for
generating inferences from evidence. This formal structure forms the theoretical basis for the inferential
rules that drive the FGWL algorithm. Let P be a proposition that is true if x € A and let Q be a proposi-
tion that is true if x € B, where both are defined on the universe of discourse x € X and where, for the
moment, A and P are crisp sets. The truth value of P, T(P) = 1if x € A and T(P)=0if x¢ A. Recall that the
standard logical connectives are the following.




Disjunction, PvQ-xe Aorxe § (A-2a)

Conjunction, PAQ~ xe Aandxe B {A-2b)
Negation, P- x ¢ A .. (A20)
Implication,P -5 Q-x¢ Aorxe (A-2d)
Equivalence, P & Q- (xe Aandx e B)or(x¢ Aand x ¢ B) © (A-2e)

The truth of the expression T(P v Q) = 1 if either T(P) or T(Q) = 1; that is, T(P v Q) = max(T(P), T(Q)).
Similarly for the conjunction connective, T(P * Q) = min(T(P), T(Q)). Because P and Q can be combined
only in four ways, it is easy to construct a truth table to show all of the possible truth values for each
connective. This is shown in Table A-1.

In the remainder of this appendix, we will be concerned primarily with implication, P — Q. Note

from Table A-1 that T(P — Q) = max( T (P), T(Q)). Thatis, the expression is true except in the case
where P is true and Q is false; by definition, a true hypothesis cannot imply a false conclusion. It is not
necessary that A and P be defined on the same universe X. The most common situation is x € A defined

onXandy e Bdefined on Y. In this case P - Q = AuUB. It can be shown (Ross 1995) that this in{plica-
tion on two universes of discourse can be written in the form of a relation:

R=(A*B)U(A*Y)=If A, Then B, (A-3)

where * is the Cartesian product of sets. This identity is very powerful. Consider our example for
heights. Suppose we have found a correlation between height and the sports that people play. To begin,
we assert that

Implication 1: If a person’s height is “tall” then he plays “basketball or football.”

Here A = {Tall} and B is the set of people that play basketball or football, which we denote B = {BF}
defined on the universe S. From our study of height and sport, we also determine that two other sets of
sports are played—soccer or racquetball (SR) and golf or tennis (GT)—and that neither of these sets of
sports is played by people over 6 ft tall. We can show the relation R graphically as in Fig. A-4. The two
shaded areas in the figure represent the region where the implication above is true—one where both x €
A and y € B is true and the other where x ¢ A. Another way to see that this is really the regionin X*Y
where the implication is true is to construct a table such as Table A-2. Here the terms in parentheses are
the truth values for the height and sport group, respectively, and the truth value of the implication for
this pair is taken from Table A-1. A value of (1,0) means that the characteristic function for height yA =1
and the characteristic function for xp =0. That is, P is true because xe {Tall} and Q is false because

y¢ {Basketball or Football]. The shaded region again is the region where the implication is true, and it is
clear that the result is the same as in Fig. A-4.

Table A-1
Truth Table for Logical Connectives in Eq. (A-2)
(G Q P PvO
T T(1) F(0) T(1)
T F(0) F(0) ()
Q) T(1) T(1) T(1)
[L__FO FO | TQ) F(0) FO) | TQ) T |
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Table A-2
Truth Table for Implication #1 with T(P) =1

T="A" 1 (1,0) 10 [
F F

T - llAl'

| D
)

% 2 o

SR TG BF = "p" Y

Fig. A-4. Cartesian representation for implication. In the shaded region, the implication P — Q is true.

The relation R for our example can be shown to be given by the rule

Ar(%Y) = max (min [a(x), X)), (1 - xa®))} - (A-4)
This is referred to as the min-max rule and may be shown in matrix form as
001
R4111], | (A-5)
111
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where the min term in Eq. (A-4) gives the value in the upper right-hand element and the (1- YA(x)) term
determines the rest of the matrix. The similarity to both Fig. A-4 and Table A-2 is apparent. The signifi-
cance of this representation is that if we now have a new set height, A’, we can use the operator R to get
f’, the vector of sports that A’ can play without violating the proposition, directly by composition, B’ = A"
R. Suppose that in this case A’ = {Short}, which we denote by {1,0,0}. Then, again without going into
detail, B’ = {1,1,1}. This vector states that regardless of what sport the person who is short plays, the
implication is true. The validity of this statement can be verified from Table A-3. Because our rule only
tells us what sports a tall person plays, it is hardly surprising that we can make no inference about what
sports a short person plays.

When rules are defined to cover more of the sets in the universe, more specific inferences can be
made. If we make the following implications in our example:

Implication 2: If a person’s height is “average” then he plays “golf or tennis”
Implication 3: If a person’s height is “short” then he plays “racquetball or soccer”

then more specific inferences are possible. We construct relations R2 and R3 for both of these implica-

tions that are similar to Eq. (A-5). Suppose further that our proposition P about height is {0,1,0}, which
corresponds to the linguistic proposition

Bob is of average height.
If we then evaluate the implications for Q (the sport played) using each of our rules, the result is

Implication 1—{1,1,1}

Implication 2—{0,1,0}

Implication 3—{1,1,1}
The first and third result occur for the same reason as noted above—if a person is not a member of the
height set for which the implication applies, we can make no positive statement about what sport he
plays. However, the second rule says something entirely different. We can express the result as

Bob is of average height.

Average height people play golf or tennis.

Bob plays golf or tennis.

Assertions of this form are referred to as modus ponens. In symbolic form, this assertion can be written as

(ArA—>B)>B. (A-6)

Table A-3
Truth Table forf’=A"R

T 0
A 0
S 1
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This statement is a tautology: “If A and A implies P then B.” Modus ponens is the basis for forward-
chaining, rule-based expert systems. The evaluation methodology used in this report is exactly such an
expert system. For this reason, all of the rules in the discussion that follows will be of the form in

Eq. (A-6). '

A second characteristic of the rules used in our logic model is that the antecedent is alwajrs a
compound statement, giving a relation of the form

(A B~ (AB KI> K. (A7)

In our example, suppose that we have determined that knowing a person’s weight helps us differentiate
between the two sports that a person of a given height plays. That is, there are now compound rules of
the following form.

If a person is short and heavy then the person plays soccer

If a person is short and medium weight then a person plays soccer
If a person is short and light then a person plays racquet ball

If a person is average and light then a person plays tennis

If a person is average and medium then a person plays tennis

If a person is average and heavy then a person plays golf

If a person is tall and light then a person plays basketball

If a person is tall and medium then a person plays football

If a person is tall and heavy then a person plays football

This complete set of rules, which we refer to as a rule base, then can be expressed in compact form as
shown in Table A-4. For example, the upper right-hand cell represents the rule

If a person is tall and heavy then the person plays football.

Let the truth values be {0,0,1} for height and {0,0,1} for weight, then Table A-4 is used to generate Table A-
5. As before, we find the implication by application of the min-max rule and see that only the statement
directly above has a non-zero characteristic function. All of the rule sets that follow will be in the form of
modus ponens with a compound antecedent.

Table A-4
Compact Form for Modus Ponens Rule Set for Height and Weight Inference
T il B F F
A T T G
S R S S ||
L M H
Table A-5

Evaluation of Modus Ponens Rule Set for Height and Weight Inference




Thus far, the discussion of inference has been restricted to crisp sets. All of the discussion above
applies equally well for fuzzy sets except that instead of using crisp characteristic functions for set
membership, one uses the fuzzy membership function p. That is, we interpret T(P) to be pu(x,A) and
substitute  for  in Eq. (A-2). To carry our example further, we would need to define membership
functions for weight as well, but we will just say that the universe of discourse W is represented by
{Light}, {Medium} and {Heavy} without specifying the exact functions. Now say that y(h): {0,.5,.5} and
Y(w): {0,.3,.7}. This is a person who is “rather tall” and “quite heavy.” In the fuzzy representation,
Table A-4 becomes as follows (Table A-6).

Application of the min-max rule [Eq. (A-4)] yields the following memberships for the various sports.

MR)=0
ws) =0
wT)=03
W(G) =05
uF) =05
uB)=0

In more formal notation, s € {Racquetball, Soccer, Tennis, Golf, Football Basketball} and ¥(s) = {0,0,.3,.5,
.5,0}. With fuzzy logic, the rule set generates membership in three sets, whereas only one set was non-
empty in the crisp representation. We say that for this case, “four of the rules fired.” Also given the
somewhat artificial rule base, the judgment that a “rather tall” and “quite heavy” person would probably
tend to play golf and football reflects quite well the “expert opinion” incorporated in the rules.

3.0. LOGIC MODEL DEVELOPMENT

The restriction to dual-element compound propositions means that the logic tree used to model the
forward-chaining expert system will have the basic structure shown in Fig. A-5. There are always two
inputs. There is also only one output, consistent with Eq. (A-5). Asshown in Fig. A-6, a more compli-
cated logic tree can be developed easily using this structure. Note that there are many inputs but only
one final aggregate output. Each input that appears at the left is referred to as a primary input, I, and is
defined on its own universe of discourse, ¥;. Therefore, we must determine the linguistics used to iden-
tify the fuzzy sets defined on this universe as well as the membership functions for each set. Suppose
that we use m fuzzy sets to describe universe ¥, and n fuzzy sets for universe ¥,. Then the rule table
will have m x n entries. The output from the rule O,, is defined on its own universe, ¥;,. The only
restriction on the number of fuzzy sets used to represent this universe, |, is that ] <m x n.* For j primary
inputs, there are j-1 rule sets required to obtain the final output. For each rule set, one must specify the

Table A-6
Evaluation of Modus Ponens Rule Set with Fuzzy Sets for
Height and Weight Inference

T 5 B F F
(5,0) (5,3) (5,7)

A 5 T T G
(.5,0) (5,.3) (5,7)

S 0 R S S
00 | ©3

*Otherwise there are sets in the output universe that are unreachable.
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corresponding m; + n; membership functions as well as m; x n; individual rules and define 1 fuzzy sets on
the universe of the output from the rule. Thus, for a reasonably complex problem, say j = 50, and with m,
n and 1 equal to 4, there are 400 membership functions, linguistics for 200 output fuzzy sets, and 784 indi-
vidual rules to specify. Although this represents a significant amount of work, the benefit is that one is
forced to describe quite clearly how the evaluation is being done.

Primary Input, |4 —

Rule Output, O12

Rule Base
Evaluation

Primary Input, I> e

Fig. A-5. Basic structure for forward-chaining expert system.

Primary Input, 14

012
Primary Input, i |
0123
Primary Input, 13
Primary Input, I4 —— 01234567
O4s5
Primary Input, I5
O4567
Primary Input, lg
Oe7

Primary Input, I

Fig. A-6. lllustrative logic tree with seven primary inputs and six rule sets.
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For our simple example, the logic tree is shown in Fig. A-7 and all of the quantities required to per-
form a complete evaluation have been defined already. We only need to specify the numerical values for
the two primary inputs, which are the height and weight of the individual for whom the evaluation is to
be made. Suppose that we wish to add another rule to the model, possibly by using a person’s age to
make some prediction about how well a sport is played. The output from the first rule becomes an input
to rule number two along with the DOMs for the primary input for age. This illustrates how relatively
simple it is to add new branches to the existing logic structure. The ability to simply prune and graft
logic branches or entire modules is an important attribute of this approach.

4.0. REACHING A FINAL CONCLUSION

It is clear that in designing an expert system, one must have a good understanding of the final judg-
ment that is needed. This means first specifying the universe of discourse for the final output. For the
FGWL screening problem, we use the likelihood of a significant quantity of retained gas as the metric.
The logic structure is intended to emulate the evaluation of a real expert, so it is natural to produce a
judgment that is in the same terms as would be expected from the expert. There are several possibilities.
The expert could be rather precise and say something like the following.

Response #1 — In my opinion there are 4000 cubic feet at STP of retained gas in the tank
or perhaps
Response #2 — It looks like there is a lot of gas in the tank
or
Response #3 — In my opinion it’s quite likely that there is a significant amount of retained gas in the tank.

Of these responses, we currently believe that the third is the most useful form in which to express a judg-
ment related to FGWL screening for several reasons. First, the judgment is expressed in terms of a like-
lihood. This is a common way in which expert opinion is framed and is also in a form where it can be
readily understood by a decision maker. We use the expression “likelihood” in the sense that it “supplies
a natural order of preference among the possibilities under consideration” (Thomas 1995). That is, some-
thing that is said to be “very likely” is understood to have a more realistic chance of happening or to
occur more frequently than something that is “extremely unlikely.” However, it must be emphasized
that the likelihood linguistic variable is not to be confused with quantitative probability nor do we intend
our use of likelihood to be associated directly with the likelihood function of probability theory. Second,
the concept of likelihood leads naturally to the specification of the outputs from intermediate rules.

Height, 14 —
Rule Output,
Sport Played
Rule Base,
Weight, |2 - Table 2-4

Fig. A-7. Logic tree for height-weight example problem.




Note also that in the third response above, the quantity about which the opinion is expressed is a
“significant amount of gas” rather than an actual numerical value. There are two advantages to this.
First, an expert will use such a formulation more frequently because it allows for a degree of ambiguity
and imprecision characteristic of AR. A quantitative number is, in fact, not really of greater value given
the complicated evaluation that must be performed. Second, for screening purposes, there is no need to
specify an “exact” quantity of gas. If a tank fails the screen, then more detailed analysis can be done
where quantities of retained gas, release fractions, and dome-space per cent of LFL are calculated based,
if necessary, on further observation and testing.

In the illustrative example of this appendix, it might better reflect the true understanding of the
relationship between height, weight, and sport of choice if we said the following.

If a person is Short and is Light THEN it is Quite Likely that the person plays racquetball.

To illustrate the application of likelihood in an evaluation, let us change our example problem slightly.
Now the judgment desired is a statement about the likelihood that given a person’s height and weight, he
or she will play tennis. On the universe of discourse L, we define three fuzzy sets described by the lin-
guistic variables {Quite Unlikely}, {Unresolved}, and {Quite Likely}, which we will refer to as {QU]}, {U},
and {QL}, respectively. The likelihood of playing tennis then is expressed by the DOMs in these three
sets, Ly: {QU, U, QL}. The set {U} is included to account for the situation where the information supplied
to the rule set is so ambiguous that the best judgment is really “I don’t know.”

Table A-7 shows the evaluation for this case where the rules associating height and weight with the
propensity to play tennis are somewhat arbitrary, but where the input pair (Average, Medium) implies a
{QL} judgment and corresponds to the old rule that a person with these attributes plays tennis. The out-
put of this rule evaluates to {.5,.5,.3}. These are the same numerical values as before, except now rather
than describing the DOM in the set of people who play tennis 1(T) = 0.3, we have made instead a judg-
ment about how likely it is that a person with these vital statistics plays tennis. In this case, {(QL) = 0.3,
whereas (QU) = u(U) = 0.5, so our judgment might be that it is “quite unlikely” that this particular per-
son plays tennis. Note also that the information is really not very good for making such a judgment as
the membership in {U} is relatively high. Thus, we can see that some judgment about the quality of the
data can be incorporated in the inference.

Table A-7
Evaluation with Fuzzy Sets of Modus Ponens Rule Base for Example Problem to Determine
Likelihood of Playing Tennis

T 5

A 5

S 0
0 3 7
L M H

It was mentioned earlier that not only should the evaluation provide some likelihood judgment but,
just as with an expert, also some assertion of confidence in the evaluation. In the example problem, we
might want to evaluate the likelihood that some group of people, say the members of a health club, play
tennis. Our rule base was developed with membership functions where “average” and “medium” were
intended to represent the population as a whole. The mernbers of the club probably have somewhat
different height and weight characteristics. More precisely, we expect that the PDFs are different than
those used in developing the evaluation model. In this simple case, we could just input the means or



medians of the member distributions and get the desired result. However, this is not really practical in
more complicated models where there are many primary inputs described by separate density functions.
The min-max operation used in the rules is nonlinear, and to make some assertion of confidence in the
conclusion from the logic structure, some knowledge of the PDF for the aggregate output is required.

Information about the statistics of the final output in a logic structure can be obtained with Monte
Carlo sampling. In our example for each trial, random samples for height and weight are obtained.”
These numerical values are converted to memberships in the fuzzy sets defined for both primary inputs,
and the single rule base is evaluated. For each trial, the output is a vector with the DOMs in the three
likelihood fuzzy sets. For example, the membership vector after trial j might be y(L) = {0.2, 0.5, 0}. At the
end of the simulation, we have N estimates for y. It can be seen that there are three distinct PDFs
associated with y:

PDF(y(L)) = {PDF((Quite Unlikely), PDF(u(Unresolved), PDF(u(Quite Likely)} .

One approach to characterizing the uncertainty in L is to derive statistics from this vector. In this case, if
we ask about the value of L at some quantile, g, associated with PDF(L.g) we use the vector

qi* = [ qi(1(Quite Unlikely)), gj(i(Unresolved)), qi(i(Quite Likely)) ] . (A-8)

This vector contains the DOMs at the g; quantile for each set in the universe of discourse for L. However,
note that the vector g* is not itself the q; quantile for L. We must specify how to process the vector to
compute q;(L). A natural approach is to define gj(L) as

qi(L) = max [qi(p(Quite Unlikely)), qi(t(Unresolved)), gi(j(Quite Likely))] . (A-9)

This specification for q; is the maximum DOM associated with the likelihood sets at this quantile. For
example, suppose that at the conclusion of the Monte Carlo simulation we have the following results at
the 0.9 quantile:

geo* =1{0.2,0.4,0.8} .

This corresponds to the following sequence of statements about the likelihood that a person selected at
random from the population of health club members plays tennis.

At the 0.9 quantile, the DOM in the set {Quite Unlikely} is 0.2.
At the 0.9 quantile, theDOM in the set {Unresolved} is 0.4.
At the 0.9 quantile, the DOM in the set {Quite Likely} is 0.8.

And the natural language expression associated with this result is the following.
At the 0.9 quantile, it is quite likely that a health club member plays tennis.
We refer to g* as the membership vector measure for the likelihood statistics.

A second approach to estimating statistics for L involves calculating a measure from L, for each trial
and then obtaining an estimate for the density function of this measure in the MC simulation. The proc-
ess of calculating a single measure from degrees of membership in a class of fuzzy sets is called defuzzi-
fication. Various methods exist to obtain a crisp output. We chose to use the centroid method. This is
often argued to be the method most consistent with an expert’s “best-estimate” estimate. To defuzzify, it
is necessary to define membership functions for L. For the example, we use the membership functions in

"We ignore the obvious correlation between height and weight for this example.
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Fig. A-9 to represent the likelihood judgments about tennis playing. It must be emphasized that although
the functions are defined between 0 and 1, this does not mean that the fuzzy sets represent actual proba-
bilities.** The defuzzification process is shown in Fig. A-10 for the membership vector (L) = {.2, 4, .8}.
The membership functions for each set in Fig. A-9 are multiplied by the degree of membership for each
set in Y(L). The union of these weighted membership functions is a max operation that produces the outer
envelope in regions where the membership functions overlap. We denote this outer envelope as M; then
the centroid A for L is found by

AML) = L:x M(x) dx /[; M(x) dx , (A-10)

where the integral denotes algebraic integration. For y(L) = {.2, 4, .8} the centroid is A(L) = 0.64.

For each trial we compute the centroid, A(L), from the output likelihood membership vector and
calculate statistics for A from the collection of trials in the Monte Carlo simulation. We refer to this as the
centroid measure and speak of centroid statistics. Suppose that the median and 0.9 quantile estimates for
ML) are A(q.5) = 0.58 and A(q.9) = 0.65 respectively. We can then make statements of form

The median centroid for the likelihood that a member of the health club plays tennis is 0.58.
or
The probability that A (L)< 0.65 is 0.9.

The logical natural language expression for L based on the centroid is the set in which it has the maxi-
mum DOM. For example, if X(q(),g) = (.8, then from Fig. A-9, the likelihood set with the largest DOM is

{Quite Likely}. The corresponding natural language expression associated with this is
At the 0.9 quantile it is quite likely that a health club member plays tennis..

Both the membership vector and the centroid approach to calculating statistics for L. and for obtaining
the associated natural language expressions are useful. The quantile vector approach provides valuable
information on how often the various rules in the rule bases “fire” as the quantile changes. One
disadvantage associated with this approach is that the dispersion associated with PDF(L) is not well-
represented. Consider for example the vector

q*s = [.95,.95,.96].

In this case, the operations above would lead to a “quite likely” result when an evaluation of “unre-
solved” would be appropriate. Because of the tendency for multiple elements in the quantile vector to
approach 1.0 at high quantiles, this problem is commonplace. The centroid method loses information on
the relative growth of membership in the likelihood sets but provides an easily understood measure for
estimating statistics and can be transformed back into a natural language expression in a straightforward
manner.

“There is no requirement that the memberships sum to one nor is there any intention that {Unresolved}
imply equally likely.
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APPENDIX B
CHARACTERISTICS OF IMPLICATION RULE BASES

The FGWL screening algorithm contains a series of forward-chaining rule bases that use formal
logical implication to make inferences about the likelihood of retained gas. The overall process in the
AR model is to convert input measurements, estimates, calculations, or observations into likelihood
estimates. The rule bases define the specific relationship between the inputs at each junction in the
inductive logic structure.

All of the rule bases used in the AR model have two inputs, which are referred to as the
antecedents. The output of the implication is the consequent or conclusion. The theory associated with
implication rule bases is discussed in Appendix A. Every rule base can be represented as a matrix with
the elements of one input set in the first column and the other in the last row. The consequent implied
by the combination of any ordered pair of antecedents is given in the matrix element with the same row
as the column input and the same column as the row input.

1.0. PROPERTIES OF RULE BASES

Discussions of rule bases can be simplified by defining a set of properties describing the relationship
between the sets used in the universes of discourse for the antecedents and those for the consequent. The
properties discussed below generate specific classes of consequent sets from combinations of the antece-
dents. The different ways in which these new sets are generated are the rule properties. Different
types of effects are described with illustrative examples from the algorithm In the following discu-
ssion, the term “class” is used to refer to a collection of sets.

Transformation

Rules that generate a completely new class of sets different from the inputs are called transforma-
tions. Table B-1 shows a rule base in which the consequent sets are completely different from the input
sets. Transformations provide the means of converting measurement input data into likelihoods.

Table B-1
Example of Transformation
Lc Rules

M U QL EL
G SE U U VL
AE U U QL
L M H

C

8

Reflection

When the action of a rule is to return one of the input classes exactly, this is called a reflection. An
example of a reflection is shown in Table B-2. In this rule, along the right-directed diagonal of the
rule, the consequent is a reflection of both input classes {H, M, L}. Reflection of the diagonal in a rule
base is a common realization of this property.




Table B-2
Example of Reflection

Gg Rules

"

H M

q M L
L L

L

M
M
L
M

oo K4 K4 o

Liquid Fraction F;

Intensification

* A rule that generates a consequent with greater intensity in some attribute than either or both of the
antecedents is called an intensifier. An example of an intensifier is shown in Table B-3. When two
antecedents with membership in H (high) sets are combined, the membership for the consequent in an
intensified VH (very high) set is implied (see shaded element). Intensifiers are used to increase the
strength of inferences when inputs are supportive or quality is high.

Table B-3
Example of Intensification

G Rules

2
~Z T
] sl -4 B
kd gl K4 o5

Gr

Relaxation

Rules that imply a consequent with less intensity in some attribute than in either or both of the
inputs is called a relaxation. An example of a relaxation is shown in Table B-4. When a very intense
input, with membership in EL ( extremely likely) and a contradictory but still very intense antecedent
with membership in VU ( very unlikely) are combined (shaded element), consequent membership in a
diluted set U ( unresolved) is implied. Relaxations are used to reduce the intensity of inferences when
data are contradictory or quality is low.

Table B-4
Example of Relaxation
Lz Rules
EL U EL EL EL
Lc U QU U QL VL
EU EU EU U U
vu QU [8) QL VL

‘Lpg

Expansion

When a rule generates an output class that is a superset of one or both of the input universes of
discourse, the property is called an expansion. An example of an expansion is the rule base shown in
Table B-5. In this example, combining the vector of sets for ¥ expands the vector of likelihood sets Lgphg




from {U, QL, VL} to {U, QL, VL, EL}. EL does not exist in the universe of discourse for L§xg but does exist
in the output, so the rule that combines H and VL to produce EL is an expansion property. An expander
is actually a special case of an intensifier that includes sets outside the range of the input class.

Table B-5
Example of Expansion

Lp Rules

VL
oL
U
oL

thq

o)
~Z o

cjcicic

Compression ‘

When an input class is converted into one of its subsets by a rule, the rule is called a compression. An
example of a compression is the rule shown in Table B-6. In this example, the effect of membership in
the set VL for one antecedent on the other antecedent is to compress the vector of likelihood sets Lpg
from {VU, QU, U, QL, VL} to { VL, U}. This is seen in either the last column or first row in the rule
table. A compressor is a special case of a reducer that reduces the range of the input class when
generating an output class.

Table B-6
Example of Compression

Lye Rules

Lp

2. RULE TAXONOMY

The rule properties above define what characteristics the class of sets used in the universe of
discourse for the consequent possesses given the classes used to express the antecedents. Another way to
consider the nature of rule bases is to classify them according to the types of antecedents. There are two
basic types, conflation and convolution rule bases.

2.1. Conflation Rule Bases

Conflation rule bases are used to combine dissimilar inputs to produce an inference. This type of rule
base is used when inferences are best made by combining the input from several related variables,
rather than by drawing separate inferences from each variable separately. Rule bases in the FGWL
screening AR model that are of the general conflation type are shown in Table B-7. Various specific
subtypes of conflation rules are used in the AR model, and these will be discussed individually below.
This type of rule is used when several different inputs provide similar inferential potential, but their
aggregate is more definitive than any one alone. Conflation rules typically show transformatio
properties. )




Table B-7
Conflation Rules

Function
Evaluate Quality of AH Estimates
Combine Dome and Waste Dynamics
Likelihoods with Maximum Concentration
Combine Slope Probability and Correlation
Coefficient
Combine Gas Probability and Slo

Phenomenological Rules

In a phenomenological rule base, the antecedent variables are related according to a model of the
phenomena. Based on the inputs, an inference is generated using the model. This type of rule base is
needed when generating inferences about gas retention and generation in the enabler segment of the
model. This type of rule contains the model implicitly in its logic. The linguistic expression for the
consequent and its universe of discourse are a direct reflection of the phenomenology contained in the
model. The rule bases that are of this type are shown in Table B-8. Phenomenological rules almost
always exhibit transformation properties.

Table B-8
Phenomenological Rules

Model
Liquid Gas Retention Co S Ry,
Salt Cake Gas Retention P - Fp Rg
Thermal Gas Generation Co T Gr
I Radiolytic Gas Generation q” Fr Gr

Qualification Rules

Qualification rules combine a quality metric with another antecedent to modify the inferences that
would be drawn from the second antecedent alone. This implication type is used when drawing
likelihood inferences from a single physical parameter. The quality metric may be a qualitative
evaluation of the inherent quality of a measurement or it may be the number of data samples in an
input. The rule sets that are of the model type are shown in Table B-9. Qualification rules often show
intensification and relaxation properties.

Table B-9
Qualification Rules

Function Input Qualifier
Modify AH Likelihood Estimates Ah Q Lan
Modify Expected Slope Estimates Lprsi I, L,
Modify Dome Space Concentration C, X, Loy
Modify Dome Space Overpressure O Xq Lex
Modify Dome Space Concentration Likelihood Lex N, L,
Modify Dome Space Overpressure Likelihood Lo No Lo
Modify Short-Term Temperature Change o0 N;e Ly
Modify Short-Term Level Change oh Nan Lan
Modify Short-Term Level-Temperature Change Lso X Lo




Extensive Rules
Extensive rules combine an extensive metric with an intensive variable to produce an inference that
depends not only on the value of the intensive variable but also on the value of the extensive metric.
This rule is used when the amount of gas retention depends not only on intensive waste characteristics,
but also on the volume of waste with those characteristics. The rule sets that are of the model type are
shown in Table B-10. Extensive rules can exhibit reflection, intensification, and expansion properties.

Table B-10
Extension Rules

Function Extender

Modify Liquid Retention by Liquid Waste Volume
Modify Solid Retention by Liquid Waste Volume

2.2. Convolution Rule Bases

Convolution rules are used to combine antecedents of the same type to infer a consequent that is also
of the same type. The two kinds of linguistic variables that appear in this type of rule base are poten-
tials and likelihoods. Convolution-type rule bases are shown in Table B-11. This type of rule fre-
quently is used when combining likelihood inferences from many different sources of data. These rules
exhibit reflection, intensification, relaxation and sometimes expansion and compression properties.

Table B-11
Convolution Rules

Function
Combine Level and Barometric Pressure Likelihoods Lan Ly
Combine FIC and ENF Gas Likelihoods L L.
Combine MT and NL Gas Likelihoods Ly L,
Combine Barometric Pressure Gas Likelihoods L Lom
Combine Predictor and Enabler Likelihoods L, L, Lpg "
Combine Dome-Space Concentration and Overpressure Likelihoods L, Lo Ly
" Combine Short-Term Level and Temperature Change Likelihoods $h Lo Lng
{t Combine Dome Space and Dynamic Likelihoods Lp L Low
If Combine Indicator and Predictor-Enabler Likelihoods L, Lpg Lg
| Combine Gas Generation and Retention Potentials R G Lg
Combine Supernate and Salt Cake Retention Potentials R, R R
l Combine Thermolytic and Radiolytic Gas Generation Potentials Gy Gy G |




APPENDIX C

COMPLETE EVALUATION FOR
ONE MONTE CARLO TRIAL FOR TANK U-106

In this appendix, we present the results of a single Monte Carlo trial using the entire AR model for
Tank U-106. This discussion is intended as a companion to that in Sec. 5 and shows in detail how the
values for the elements of evidence affect the inferences made in the various logic modules.

The evaluation of the final likelihood for the retention of significant gas, Ly, proceeds as described in
Sec. 3 and as shown in Fig. C-1. We will discuss at some length the details of the evaluation for the
predictor likelihood, Ly, and the enabler likelihood L;. The qualitative factors used for determining L; are
for illustration purposes only as noted above, and therefore, L, is discussed only briefly.

1.0. PREDICTOR LIKELIHOOD, L,

Recall that the predictor likelihood, Ly, is determined using a convolution rule with the barometric
pressure likelihood, Ly, and the long-term level change likelihood, L,;, as inputs. We begin by
considering L.

Barometric Pressure

Predictor Likelihood, Lg
Aggregate Predictor
, Likelihood, Lp

Long-term Level Change

Predictor Likelihood, LA Predictor - Enabler

Likelihood, Lpg

Aggregate Retention
Potential, R
Aggregate Enabler
Likelihood, Lg

Aggregate Generation | Final

Potential, G R_eta{ned Gas
Likelihood, LF

Dome Space
Likelihood, Lp

Waste Dynamics Aggregate Indicator
Likelihggg, Lw Likelihood, Lj

Maximum
Concentration, Cpy

Fig. C-1. Truncated logic tree for the evaluation of L.
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1.1. Barometric Pressure Likelihood, L
Figure C-2 shows the complete logic tree for this evaluation. As noted earlier, the evaluation of the

branch for each instrument is identical. Figure C-3 shows the logic structure for L. Also shown are the
input values from a single Monte Carlo trial for the primary inputs P, R% S, and I. Recall that these
variables are the fraction of negative

Negative Slope
| Probability, Pgt

Linear Regression
21 Coefficient, R%
l Slope
Parameter, S¢

] interval
Measure, |

Negative Slope
| Probability, Pge

|
g Linear Regression
B coetficient, F2,

l Siope
Parameter, S,

] Interval
Measure,

Negative Slope
| Probability, Pgm

Linear Regression

: | Goefficient, R2,

| Slope
Parameter, Sy,

| interval
Measurs, I,

Tape

Man

Negative Siope
| Probabifity, Pg,

lLinear Regression
Coefficient, R2,,

Slope
Parameter, Sp

Neutron Log

interval
Measure, |

Lprs

FIC Barometric
Pressure
Likelihood, L¢

LpRs

ENRAF Barometric
Pressure
Likelihood, Lo

Lie

Lprs

Man. Tape
Barometric
Pressure
Likelihood, Ly

-~
-
-
-

LpRs

Neutron Log
Barometric
Pressure
Likelihood, L,

Agregate
Baromar ic
Pressure

Likelihoo d,Lpg

Fig. C-2. Logic structure for evaluation of barometric pressure correlation likelihood Lg.




{1,0,0}
Pg =002 ]
{0,1,0)

PRP

R2 = .174
{1,0,0f {0,0,1,0,0}

LPRS

{1,0,0}
S =-.067

{0,0,1,0,0}
L

{0,0,1}
| =81

Fig. C-3. L;with inputs and DOMs in applicable fuzzy sets.

slopes probability, the linear regression coefficient, the pressure-height slope, and the number of intervals
used to calculate these statistics for the FIC sensor in Tank U-106. Also shown for each parameter in the
logic tree is a set that represents the DOM in each fuzzy set in which the parameter may have
membership. Set membership for primary inputs is determined directly from their defined membership
functions. Pgis described by fuzzy sets {Low}, {Unresolved}, and {High} with the membership functions
shown in Fig. 3-5 in the main body of the report. The value of P; is fixed for each tank, and for Tank U-
106, it is P = .002. This gives DOM in the three fuzzy sets {Low}, {(Medium}, {High} of W(Low) =1,
u(Medium) = 0 and p(High) = 0. We denote this as Y(Ps) = {1,0,0], which is a vector with the three
elements u(Pg, L) = 1, WP, U) = 0 and w(P;, H) = 0. For this particular trial, R? has a value of 0.174, which
translates to memberships in {Poor, Fair, Good} of 'y(Rz) ={1,0,0}. Similarly, for S: {Positive, Slightly
Negative, Very Negative}, ¥(S) = {0,1,0}, and for I: {Small, Medium, Large} we have ¥(I) = {0,0,1}. In this
particular trial, all of the input values are such that each parameter has full membership in only one set.

The first rule evaluation in the tree is for Py, using Ps and R; as inputs. Py is an estimate of the
probability of gas and is represented by Pyp: {Low, Unresolved, High}. The logic structure is shown in
Fig. C-3 along with the DOMs for P; and R,. Recall that the memberships for Py are given by the max-
min operator for evaluating the rule implication (see Appendix A). The minimum membership for each
rule is shown in the boxed portion of Table C-1 along with the output fuzzy set for Py, generated by the
implication

If Ps AND R, THEN Py .
For example, in the shaded box, the implication is

If Pg is Low AND R? is Poor THEN PRp is Unresolved

In this case, W(Ps, U) =0, u(R? P) = 1 evaluates to u(Ppg, L)— 0 because min(u(Ps, U), w(R? P)) = 0. Thatis,
the DOM in {Low} for Pgp is 0. The maximum DOM for each fuzzy set for Pgp from the table is u(L) =0,
p(U) = 1, w(H) = 0, which we represent as Y(Pgp) = {0,1,0}. In this simple case with only full memberships
in single sets for the inputs, only a single rule is active. An equivalent logic statement is




If the negative slope fraction probability is Low AND the linear regression coefficient is Poor
THEN the gas probability is Unresolved.

This logic is consistent with a best-estimate judgment for the implication of the two inputs.
Table C-1

Numerical Example of the Evaluation of the Conflation Rule
for P and R? to Generate Py,

H 0
Pg M 0
L 1

Returning to Fig. C-3, the slope parameter S has a value of -0.067 for this trial and therefore from Fig. 3-5
has DOMs S: {0,1,0}. The first likelihood estimate for retained gas, Lpgg, is generated from the rule
combining Prpand S using the rule base in Table 3-4. Recall that Ly is defined on the universe Lygse

{Very Unlikely, Quite Unlikely, Unresolved, Quite Likely, Very Likely}." Full membership in {Slightly
Negative]} for S combines with Y(Pgp) = {0,1,0} to yield Y(Lggs) = {0,0,1,0,0}. The logic incorporated in Table
34is

If the gas probability is Unresolved and the pressure-height slope is Slightly Negative THEN the
retained gas likelihood is Unresolved.

Referring back to Fig. C-2, this likelihood is combined with I to obtain the FIC estimate, L;, for the
likelihood of a significant quantity of retained gas. 1is defined on the universe Ie {Small, Medium,
Large}, and in this case, for I = 81, YW(I) = {0,0,1}. The rule for Lygs and I in Table 3-5 evaluates to y(L;) =
{0,0,1,0,0}. That is, for the FIC, the likelihood of retained gas using the input values for this trial is
represented by full membership in the unresolved fuzzy set. This result is fully consistent with the logic
discussed in Sec. 3.

Figures C-4 and C-5 show the results generated from evaluation of the logic trees for the ENRAF and
NL sensors. For these sensors, y(L,) = {0,.65,.35,0,0} and y(L,) = {0,0,.53,.29,0}. It can be seen that these
results are not in good agreement. Based on the ENRAF, the likelihood has strong membership in the
{Quite Unlikely) set. In fact, this judgment would be even stronger if the number of available intervals
was greater as Lpgs for the ENRAF is y(L,) = {.65,.35,0,0,0}. On the other hand, the values for P, R?, and S
for the neutron log generate a judgment for Ly just as strong in the opposite direction, Y(L,,) =
{0,0,0,.47,.53}). Again, the number of intervals moderates this judgment. Note that the numerical values

" Likelihoods are represented by a class of fuzzy sets with three, four, five or seven elements. The final
. aggregate likelihood has seven elements ranging from {Extremely Unlikely} to {Extremely Likely}.
Positive indicators have four elements that range from {Unresolved} to {Extremely Likely} while a
negative indicator is the reflection of this. The set of fuzzy sets for the aggregate indicator likelihood Ly
has three elements, {Extremely Unlikely}, {Unresolved}, {Extremely Likely}. All other likelihoods vary
from {Very Unlikely} to {Very Likely} and the set of fuzzy sets for these parameters has five elements.
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for DOM always correspond to values that first are obtained from membership functions for primary
inputs. For example, in Y(L,) = {0,0,.53,.29,0} the value 0.53 originally represented the DOM in {Very
Negative} for S, and 0.29 was originally the DOM for I in {Medium}. The sets for which these values
indicate DOM change as the evaluation proceeds toward the right in the logic tree. The values that
“survive” are determined by the application of the min-max operation at each rule.

At this point, it is necessary to reconcile the three somewhat contradictory likelihoods. The process
for doing this is shown in Fig. C-6. Note that although the manual tape instrument is not available for
Tank U-106, the approach used here for missing instruments is to give them full membership in

{0,1,0}

Pg=.5

{1,0,0}
PRP

R2 = .068
(10,00 {.65,.35,0,0,0}

Lprs

{.65,.35,0}
S =.161

{.65,.35,0,0,0}
Le

{0,1,0}
=3

Fig. C-4. L, with inputs and degrees of membership in applicable fuzzy sets.

{1,0,0}
Pg=.035

{0,0,.71}
PRP

R2 = 572
{0,.71,.29} {0,0,0,.47,.53}
LPRs

{0,.47,.53}
S =-.647

{0,0,.53,.29,0}
Ln

{.71,.29,0}
=8

Fig. C-5. L, with inputs and degrees of membership in applicable fuzzy sets.




{Unresolved}. For this trial, one sensor in each group mn and fe has this membership. Additionally, both
rules are constructed so that if one input is y = {0,0,1,0,0}, then the output likelihood for the pair replicates
that of the other input. Therefore, ¥(L;)— {0,.65,.35,0,0} and (L) — {0,0,.53,.29,0}. Finally, these two
likelihoods are combined according to Table 3-8, giving a DOM of Y(Lg = {0,.53,.35,.29,0}. Note that the
effect of the disagreement between L,,, and L, reduced the DOM of L; in {Quite Unlikely} and generated
membership in {Quite Likely}.

{0,0,1,0,0}
Lt
{0,.65,.35,0,0}
Lfe
Le
{0,.65,.35,0,0} {0,.53,.35,.29,0}
LB
{0,0,1,0,0}
Lm
{0,0,.53,.29,0}
Lmn
Ln

{0,0,.53,.29,0}

Fig. C-6. Lg with inputs and degrees of membership in applicable fuzzy sets for individual sensor and
aggregate likelihoods.

1.2. Long-Term Level Change Likelihood, Lah .

This estimator depends on the calculated level change, Ah, and two level ratios, Mg, and Mg, as
discussed in Sec. 3.2.2 and shown in Fig. C-7. In this trial, the ratios used to provide a numerical measure
of the importance of the correction terms for pre-1981 level change and evaporation are large, which
means that their role in estimating Ah is also large. According to Table 3-11, the quality, Q, associated
with Ah is judged to be poor, so Q: {Poor, Fair, Good} evaluates to ¥(Q) = {1,0,0}. In this case, the rule for
L, is independent of the actual membership degrees for Ah. The rule truncates to

If the quality parameter is Poor THEN L,, is Unresolved.
This is consistent with the philosophy that no definitive conclusions should be drawn from poor data.

1.3. Final Predictor Likelihood Estimate

Figure C-8 shows the combination of Ly and L,, to produce the predictor likelihood Lp. Again
because L,;, has non-zero membersfu'p only in {Unresolved}, the output of L; is the same as for Y(Lg) =
{0,.53,.35,.29,0}. It may appear that the level change branch of the logic tree has played no role in this
evaluation. However, if the DOM for L,;, had been less than the DOM for any fuzzy set representing Ly,

then the corresponding element in Ly, would have been determined by L, rather than Ls.. This would be
true regardless of the poor quality of the measurement.

" For example if p(Lah, U) = @, 0.3 < a < 0.35 then Lp: {0,0,,0,,.29,0}.
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{0,0,1}

Mgt =147
{1,0,0}
Q
Mg =15.8
{0,017 {0,0,.59,0,0}
LAh
{0,.41,.59,0,0}
Ah=8.0

Fig. C-7. L,, with inputs and degrees of membership in applicable fuzzy sets.

{0,.58,.35,.29,0}

L
{0,.53,.35,.29,0}
Lp
{0,0,.59,0,0}
Lah

Fig. C-8. Aggregate predictor likelihood L, with inputs Lg and L,,, and degrees of membership in
applicable fuzzy sets.

2. EVALUATION OF ENABLER LIKELIHOOD, L¢

The evaluation of enabler likelihood proceeds as described in Sec. 3.3. There are two basic compo-
nents of the enabler estimate—generation and retention potential. We consider the two separately.

2.1. Gas Generation Potential, G

Figure C-9 shows the logic tree for gas generation from chemical reaction and radiolysis. Chemical
production depends on total organic carbon, C,, and temperature, T. Both have universes {Low, Medium
, High}. Here C,, has full membership in {High]}, and {(T) = {.24, .76, 0}. Generation potential, G, has the
universe Ge {Low, Medium, High, Very High}. For these inputs, {(Gy) = {0, .24, .76, 0}. Radiolysis
depends on the volumetric heat generation, q’”, and the liquid fraction, Fy, which both have universes
{Small, Medium, Large}. For both parameters, there is membership in {Medium} and {High}. The
radiolysis potential evaluates to (Gg) = {0, .52, .16,0} in our example. The total gas generation potential
obtained from Gy and Gy, is ¥(G) = {0, .24, .52, .16}. Note that G has p(G,Very High) = .16. This arises
from the convolution rule in Table 3-16.

If the chemical gas production potential is High and the radiolysis potential is High, THEN the total
potential is Very High.. ) ’




{0,0,1}

Co=.95
{0,.24,.76}
Gt
T=826
{23,77.0y {0,.24,.52,.16}
G
{0,.52,.48}
q' =74 |
{0,.52,.16}
GR
Fr=.32
{0,.16,.84}

Fig. C-9. Logic tree for gas generation potential.

2.2. Gas Retention Potential, R

Figure C-10 shows the logic tree for gas retention. Recall that the potential for retention in the solids
and supernate layers is evaluated. Retention in the liquid layer is assumed to depend on Co, and the
specific gravity, S. As discussed in Sec. 3.3.2.2, the amount of liquid waste is evaluated to convert the

{0,0,1}
Co=.95
{0,0,.5}

S=1.40
{0,.5, 5} {0,0,.5}

{1,0,0}
Vp = 14.6

{0,.9,.1} | {00,.5}

@s = -28
{0,.94,.06}
Rs

Fj=.28
{0,.94,.06} {0,.94,.06}
Rs

{.95,.05,0}
Vg = 207

Fig. C-10. Logic tree for gas retention.
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intensive retention property to an extensive capability. The extensive liquid retention, R; has the
universe {Low, Medium, High}. For the values obtained for this Monte Carlo trial, {Ry) = {0, 0, .5).
Retention in the solids layers depends on the porosity and the interstitial liquid fraction. In this case, the
extensive solids retention potential evaluates to Y(Rs) = {0, .94, .06}. Finally, the aggregate retention
potential is ¥(R) = {0, 0, .5}. This result occurs because the applicable rule in Table 3-18 is

If the supernate retention potential is High AND the solids gas retention potential is High OR
Medium THEN the aggregate retention potential is High.

2.3. Combination of Generation and Retention Potentials

The enabler likelihood is obtained using the conflation rule given in Table 3-23. In this case we have
Y(G) = {0, .24, .52, .16} and R: {0, 0, .5}. These inputs evaluate to y(Lg) = {0, 0, 0, .5, .16}. That is, the enabler
- likelihood has DOM in {Quite Likely} and {Very Likely}. This is certainly a reasonable conclusion given
the strong potential indicated for gas generation and retention for this trial.

3. GAS INDICATOR LIKELIHOOD, L,

For testing purposes, all of the qualitative factors used as primary inputs for the positive indicator
likelihoods, L,, Lo, Lg, and L, were given crisp values or distributions that would not be considered
strong evidence of GRE behavior. The positive likelihoods are elements in the universe {Unresolved,
Quite Likely, Very Likely, Extremely Likely}. For the inputs used here, all but L, evaluate to y= {1,0,0,
0}, whereas Y(Lo) = {.5, 0, 0, 0}. This occurs because for this trial, the number of observations, N, had
equal membership in {Several} and {Many]}. As a result, the aggregate positive indicator likelihood
evaluates to Lpw: {.5, 0, 0, 0}. The negative indicator Cy is an element in the universe {Very Low, Low,
Medium, High}. For Cy = 83.5% of LFL, this gives DOM of {{Cy) = {0, 0, .33, .67}. Finally, the aggregate
likelihood, L;,, can have membership in {Extremely Unlikely, Unresolved, Extremely Likely}. It is hardly
surprising for the uninformative information used as test input that this evaluates to y = {0, .5, 0}. Note
that the DOM associated with L, has been propagated to the final likelihood parameter.

{1,0,0,0}
Lg

{'5!0)0)0}
Lp

Lo
{5,000}

{.5,0,0,0}

{1,0,0,0}
- Lpw

Lsh
{1,0,0,0}

Lshe

Lo
{1,0,0,0} {1,0,0,0}
Lw

{0,.5,0}
Ly

{1,0,0}
X

{0,0,.33,.67}
CMm

Fig. C-11. Logic tree for combining positive and negative indicator likelihoods.
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4. EVALUATION OF FINAL GAS RETENTION LIKELIHOOD, L¢

The predictor, enabler, and indicator likelihoods are combined according to the rules in Sec. 3.5 with
the logic structure shown in Fig. C-12. Note that L; is Ly:{Quite Unlikely, Unresolved, Quite Likely},
whereas Lg: {Quite Likely, Very Likely}. The convolution rule for Ly in this case (Table 3-35) reduces to

QL VL VL
Ly U QL VL
QU U U
QL VL
Lg

Thus, Ly can only have memberships in {Unresolved, Quite Likely, Very Likely}. The basic consideration
in this rule is that both input likelihoods Ly and Lg have equal weight. If they agree, the judgment is
intensified; disagreement leads to an unresolved judgment. Thus, in this case, we have Lgg: {0,0,.5,.35,.29),
and it can be seen that the convolution of the predictor and enabler likelihoods generates an aggregate
likelihood where there is significant membership in the likelihood fuzzy sets on the likely end of the
spectrum. It was seen earlier that the indicator likelihood L; has DOM only in {Unresolved} and,
according to the logic rules developed earlier, cannot affect the output of the evaluation rule. The final
likelihood, Ly, is defined on the universe {Extremely Unlikely, Very Unlikely, Quite Unlikely, Unresolved,
Quite Likely, Very Likely, Extremely Likely} and so must evaluate to Y(Lg) = {0, 0, 0, .5, .35, .29, 0}. The
centroid rule for defuzzification (see Sec. 3.7) is used to convert these DOMs into a crisp final result, A(Lg)
=0.61 in this case.

It is interesting to consider the effect of L, if either the positive or negative indicators have
membership in other than Unresolved. Suppose that we have Y(C,) = {.5,.5,0,0} and y(Lpw) = {1,0,0,0}.
That is, the calculated Quickscreen dome-space concentration is low enough to provide some
membership in {Extremely Unlikely} and there are no positive indications of a GRE. In this case, y(L;) =
{.5,.5,0} and the final aggregate likelihood becomes ¥(Lg) = {.5,0,0,.5,.35,.29,0}. A vector with this pattern is
indicative of somewhat contradictory data and the centroid value for Lg,, A(Lg) drops slightly to 0.59. On
the other hand, if there is some positive indication of a GRE, say the DOMs are reversed with y(C) =
{0,0,0,1} and y(Lpw) ={0,0,.5,.5} then (L) = {0,0,0,.5,.35,.29,.5}. In this case, the value for A(L;) increases to
0.68. If the value of Cy is very small so that y(Cy) = {1,0,0,0} then the result is Y(Ly) = {0,0,.5,.35,.29,0} and
A(Lg) = 0.47. In this case, the data are totally contradictory, and no definitive judgment can be reached.
Finally, if there is strong positive evidence of a GRE, the final results are y(Lg) = {0,0,0,0,0,0,.5}. and MLy) =
1.0. The agreement here is very strong, and the expert system provides a very clear judgment. It was
noted in Sec. 3 that the memberships for L;; are asymmetric about 0.5 with a bias toward classifying tanks
as “Quite Unlikely” or “Unresolved” rather than as “Very Unlikely” or “Extremely Unlikely.” This
reduces the power of Cy to influence L;. If one uses a symmetric set of functions as discussed in Sec. 5,
then for f(Cyy) = {1,0,0,0} we have A(Lg) = 0.33 rather than 0.47. This illustrates the ability of the algorithm
to incorporate different linguistic “degrees of conservatism.”
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R
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Fig. C-12. Combination of predictor, enabler, and indicator likelihoods to obtain L.
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