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INTRODUCTION 

The Tank Waste Characterization Program has taken many core samples, grab samples, and 
auger samples from the single-shell and double-shell tanks during the past 10 years. 
Consequently, the amount of sample data available has increased, both in terms of quantity of 
sample results and the number of tanks characterized. More and better data is available than 
when the current radiological and toxicological source terms used in the Basis for Interim 
Operation @IO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) 
were developed. 

The Nuclear Safety and Licensing (NS&L) organization wants to use the new data to upgrade 
the radiological and toxicological source terms used in the BIO and FSAR. The NS&L 
organization requested assistance in producing a statistically based process for developing the 
source terms. This report describes the statistical techniques used and the assumptions made to 
support the development of a new radiological source term for liquid and solid wastes stored in 
single-shell and double-shell tanks. 

The results given in this report are a revision to similar results given in an earlier version of 
the document (Jensen and Wilmarth 1999). The main difference between the results in this 
document and the earlier version is that the dose conversion factors (DCF) for converting 
pCilg or pCi/L to SvlL (sieverts per liter) have changed. There are now two DCFs, one based 
on ICRP-68 and one based on ICW-71 (Brevick 2000). 

1.0 SUMMARY 

Estimates of unit liter doses (ULDs) for waste in the single-shell tanks (SSTs) and double-shell 
tanks (DSTs) were computed based on recent sampling data from the tanks. The units for a 
ULD are sieverts per liter (Sv/L). The data was obtained from the Tank Characterization 
Database. There was sufficient data to estimate a ULD for 54 (57) SSTs with solid samples, 
23 (26) SSTs with liquid samples, 15 (15) DSTs with solid samples, and 26 (27) DSTs with 
liquid samples. The numbers in parentheses refer to the number of tanks with a ULD if 
observations below detection limits are included. 

If it is assumed that the tanks selected for characterization were. selected at random, then the 
ULDs given in this document are unbiased estimates of the ULDs for all SSTs and DSTs. 
However, it may not be appropriate to assume that the characterized tanks were chosen at 
random. Many of the tanks that were selected were chosen because they were known to 
contain wastes that were of concern to Hanford’s unresolved safety questions and safety issues. 
Consequently, if the data from the characterized tanks are an upper bound for all  of the tanks 
then the ULDs are also an upper bound for all tanks. 

1 
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The lognormal probability distribution was fit to the ULDs. ULD quantiles (SvIL) 
corresponding to the 95* and 99* percentiles of the lognormal distribution were computed. 
The ULDs (SvIL) corresponding to the 95/95 and 95/99 tolerance limits (TLs) were also 
computed (the interpretation of the TLs are, we are 95% confident that at least 95% (99%) of 
the population is less than the limit). The ULD quantiles and TLs are compared to the ULDs 
for the FSAR (FDH 1999b). In all but one cases, the ULD for the FSAR is greater than the 
95* and 99* percentiles of the lognormal distribution. The exception is that the FSAR is less 
than the 99* for DST solid samples based on DCF ICRP-71. The FSAR is greater than the 
95/95 TL except for ULDs based on DST liquid samples. They are less than the 95/99 TL 
except for ULDs based on SST solid samples. 

2.0 AVAILABLE SAMPLE DATA 

The TCD (Tank Characterization Database) contains the waste characterization data from tank 
samples obtained since 1989. This database was the source of data used to estimate the ULD 
for each waste storage tank. 

From TCD, all of the data (available in January 2000) for the following five isotopes were 
obtained, 13’Cs, gross alpha, %‘Am, 
observations. There were 3,475 observations from liquid samples and 9,128 from solid 
samples. There were 141 observations on liquid samples with inconsistent units; e.g., 137 
observations from liquid samples with units pCi/g, 3 with unit’s pg/L, and one observation 
with no units. There were 115 observations with the “R” qualifier. The “R” denotes that the 
observation is unusable. All observations with the “R”qualifier and inconsistent units were 
deleted. The remaining 12,380 observations consisted of 3,357 on liquid samples and 9,023 on 
solid samples. There were 998 observations on liquid samples that were below the detection 
limits and 1,780 observation on solid samples below detection limits. The units are pCilg or 
pCi/L. Not every tank had data from each of the five isotopes. 

Estimates of the ULD were computed based on three methods for incorporating observations 
that were below detection limits. First, all observations below detection limits were deleted. 
In this case, the quantile estimates in the tables and figures apply to the proportion of the 
population with analyte concentrations above detection limits. Figures 1 through 8, which 
summarize the computations, are based on this method. Second, the below detection limit 
observations were replaced by the detection limit, and third, the below detection limit 
observations were replaced by zero. Note that these three methods each introduce a bias into 
the final results. A statistical comparison of the results given by each method indicates that the 
differences are small. 

s 9 m  Sr, and %. There were a total of 12,603 

The ULDs were computed based only on the isotopes 137Cs and ?Sr and on alpha. The validity 
of this assumption is outlined in Sections 2.0 and 3.0 of Jensen et al. (1998) and in Table 3 of 
WHC-SD-W-SARR-037 (WHC 1996). 

2 
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2.1 TANK SPECIFIC RADIOISOTOPE CONCENTRATIONS 

For each tank, the arithmetic mean (pCilg or pCilL) of the data for each of the five isotopes 
was computed. The data from the different analytical procedures were combined. That is, the 
data from the water, the acid and the fusion dissolution were combined. 

The following methods were used to select the data used in the ULD calculations. 

For 137Cs: The mean of the 137Cs data was used. 

For alpha: If available, the mean for gross alpha was used. If there was no mean for gross 
alpha, the mean from 241Am was used. 

For 90S$: If available, the mean for '9'90Sr was used. If there was no mean for '9'90Sr, the mean 
for %r was used. If there was a mean for both 89'90Sr and ?3r, the mean of the combined data 
was used. 

Tables A-1 to A-12 in Appendix A list the means for "7Cs, for GA (gross alpha), and for wSr. 
The tables are given by type of tank, SST and DST, and by type of waste, solid and liquid. 
The values in Table A-1 to A-12 are slightly different from the corresponding tables given in 
Rev. 0 of this document (Jensen and Wilmarth 1999). The reasons for the difference are that 
additional tank sample data has been added to TCD and that in Rev. 0, observations on total 
alpha (total alpha energy emitted from "'Pu, 239Pu, 2*opU and %'Pu) were combined with gross 
alpha. The observations on total alpha were not included in the results reported here. 
However, for most tanks, the means reported in Appendix A of this document and in 
Appendix A of Rev. 0 are identical. The tables in Appendix A also list the number of 
observations available by analyte and the number of observations above the detection limit 
(DL). 

There are a total of 149 SSTs and 28 DSTs, and the ULDs can only be estimated for a subset 
of the total number of tanks. The estimates of the ULDs given in this document are unbiased 
estimates of the ULDs for all SSTs and DSTs if it is assumed that the tanks with a mean for 
137Cs, for alpha, and for %r (Tables A-1 through A-12) are a random sample of the tanks. 
Alternatively, if it is assumed that the tanks with a mean for "'Cs, for alpha, and for POSr are 
an upper bound to the means for all of the other tanks, then the ULDs based on the sampled 
tanks are an upper bound for the ULDs for all tanks. 

There was insufficient data from TCD to compute a ULD for the two aging waste tanks 241- 
AZ-101 and 241-AZ-102. However, some preliminary laboratory data was available from 
recent tank samples. Table A-13 lists the summary means obtained from the TCD and the 
preliminary samples. For tank 241-AZ-101, a ULD could not be computed based on solid 
samples. For liquid samples, a ULD was computed using the laboratory detection limit (DL) 
for gross alpha as a quantitative value. 

3 
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2.2 TANK SPECIFIC UNIT LITER DOSE 

The units of the means in Tables A-1 to A-12 are pCi/g or pCi/L. The units for the ULD are 
Sv/L. The conversions factors used are given in Table 1. The fourth and sixth rows of this 
table are the dose conversion factors @CF) for 137Cs, alpha, and ?3r. There are two DCFs, 
the first is DCF based on ICRP-68 5pm AMAD (DCF ICRP-68) and the second is the DCF 
based on ICRP-71 adult (DCF ICRP-71). It is assumed that the concentration for is the 
same as that for ??.r. 

The dose conversion factors @CF) given in Table 1 are different from the conversion factors 
used in Rev. 0 of this document (Jensen and Wilmarth 1999). 

Table 1. Conversion Factors, pCUg or pCUL to Sv/L 
I units. 1 3 7 a  I Alpha’ I OBSr 

‘The DCF for SvlBq are reported in the Attachment to (Brevick 2000). 
m e  DCF for alpha is the mean of four values: SST liquid and solid and DST liquid and solid. 
)The conversion glL from a weight basis to a liquid basis is given on page 7 of Brevick et al. 
(1996). 

From Table 1, the conversion from pCi/g to Sv/L for solid samples is 

Sv/L = (pCi/g) x (Bq/pCi) x (g/L) x (WBq), 

and for liquid sample the conversion from pCi/L to Sv/L is 

Sv/L = (pCi/L) x (Bq/pCi) x (SvlBq). 

Using the DCF ICRP-68, for solid samples, the equations used to convert pCi/g to Sv/L are 

SV/L(”~CS) =mean(”7Cs)x( 3.70E+04)~(1.60E+03)~(6.70E-o9) 

Sv/L(alpha) =mean(alpha)x(3.70E+04)x( 1.6OE+O3)~(2.89E-05) 

Sv/Lf%r+wY) = mean~Sr)x(3.7OE+O4)x(l.6OE+O3)x(3.OOE-O8+ 1.70E-09). 

For liquid samples, the equations used to convert pCi/L to Sv/L are 

4 
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Sv/L(”’Cs) =mean(’37Cs)x(3.70E+04)x(6.70E-09) 

Sv/L(alpha) =rnean(alpha)x(3.70E+04)x(2.89E3-05) 

SvlLeOSr +wY) =rnean(%r)x(3.70E+04)~(3 .OOE-08 + 1.7OE-09). 
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Using the DCF ICRP-71, for solid samples, the equations used to convert pCi/g to SvlL are 

SV/L(”~CS) =mean(”’Cs)x( 3.70E+O4)~(1.60E+03)~(4.60E-09) 

Sv/L(alpha) = mean(alpha)x(3.70E+O4)x( 1.6OE+O3)~(4.50E-05) 

Sv/LrSr +90Y) = meanrSr)x(3.7OE+O4)x( 1.60E+03)x(3.60E-08 + 1 SOE-09). 

For liquid samples, the equations used to convert pCi/L to Sv/L are 

SV/L(”~CS) =mean(137Cs)x(3.70E+04)x(4.60E-09) 

Sv/L(alpha) = mean(alpha) x(3.70E+ 04)x (4.5OE-05) 

Sv/LpSr +90Y) = mean~Sr)x(3.70E+04)~(3.6OE-08 + 1 .5OE-09). 

The ULD is defined to be the sum of the Sv/L for the four isotopes. The ULDs, for each tank 
and waste type, are given in Tables B-1, B-2, B-3, and B-4 in Appendix B. ULDs, for tanks 
241-AY-101 and 241-AY-102, are included in Tables B-3 and B-4. These two tanks are 
“aging waste tanks.” Tanks 241-AZ-101 and 241-AZ-102 are also “aging waste tanks.” The 
ULDs for these two tanks were computed using the data in Table A-13. 

All of the statistical computations were performed using the computer program S-PLUS 
(S-PLUS 2000). The S-PLUS functions written to convert pCi/g or pCi/L to Sv/L and to form 
the ULD are listed in Appendix D. 

3.0 LOGNORMAL DISTRIBUTION 

Three probability distributions can be fit to the ULD data: a lognormal, a gamma, and a 
Weibull. A goodness-of-fit test was used to test the appropriateness of the three distributions. 
Based on the goodness-of-fit test, the lognormal distribution cannot be rejected for SST solid 
samples and DST solid and liquid samples. At the 0.05 level of significance, the lognormal 
distribution is rejected for SST liquid samples. The gamma and Weibull distributions are also 
marginal for SST liquid samples. 

These three distributions were also fit to ULDs used in the gas release event safety analysis 
tool (Jensen et al. 1998). For that project, and for Rev. 0 of this document (Jensen and 
Wilmarth 1999), the lognormal distribution was the recommended distribution. In addition, 
tolerance limits can be computed for the lognormal distribution, but not for the gamma or 
Weibull distribution (tolerance limits are discussed in Section 3.2). To be consistent with 
Jensen et al. (1998) and since the lognormal distribution cannot be totally rejected, a lognormal 
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distribution is the recommended distribution for the ULDs. Even though the lognormal 
distribution for the SST liquid samples was rejected, the statistical results will be based on the 
lognormal distribution. Consequently, they should be used with caution. 

The lognormal distribution is defined as follows. A random variable X has a lognormal 
distribution if Y = log(X) has a normal distribution. The lognormal density function has the 
form 

where p is the mean of Y =log(X) and a' is the variance of Y = l o g o .  The unbiased 
estimates of p and are the sample mean, b , and sample variance, 6', on the natural log 
scale. Table 2 gives the estimates of the means and variances for the four types of samples. 
The individual ULDs are given in Tables B-1 through B-8. The terms M1, M2, and M3 refer 
to the three models for using observations below detection limits; that is, they refer to deleting 
all observations below the detection limit, replacing the observations by the detection limit, and 
replacing them with zero. As can be seen from Table 2, there is little change in the estimates 
6 and 6' between the three models. This means that there is little difference in the 
lognormal distributions for the three sets of ULDs. 

Table 2. Estimates of Means (log(Sv/L)) and Variances ((log(Sv/L))2) for the Lognormal 
Distribution (2 sheets) Distribution (2 sheets) 

7 

I 
I I I 2.82E+00 I 2.72E+00 I 2.96E+00 I 3.13E+00 I 3.06E+00 I 2.62E+00 

7 
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Table 2. Estimates of Means (log(Sv/L)) and Variances ((log(Sv/L))z) for the Lognormal 

The Kolmogorov-Smirnov goodness-of-fit test was used to determine the appropriateness of the 
lognormal distribution. If the level of significance is chosen to be 0.05, the lognormal 
distribution cannot be rejected for SST solid samples and DST solid and liquid samples. 

The appropriateness of the lognormal distribution for SST liquid samples is questionable. 
However, for these samples, the gamma distribution is also questionable, and the Weibull 
distribution only fits marginally well. The gamma distribution is also rejected for the SST 
solid samples. The difficulty with fitting any probability distribution to the ULD SST liquid 
sample data is that it appears to be bimodal. For this waste type, based on DCF ICRP-68, most 
of the ULD values are around 100 SvIL, and there are two extreme values around 1,OOO Sv/L. 
Based on DCF ICRP-71, most of the ULD values are around 70 SvIL, and there are two 
extreme values around 1,500 Sv/L. For the SST liquid sample, the statistical results will be 
based on the lognormal distribution. However, they should be used with caution. 

Figures 1 through 8 are plots of the lognormal density functions for the four types of waste 
listed in Table 2 using ULD.Ml. Figures 1 through 4 are based on DCF ICRP-68 and Figures 
6 through 8 are based on DCF ICRP-71. These plots are for the case when observations below 
the detection limits are omitted. The plots for the other cases are similar. Superimposed on 
these plots are histograms of the corresponding ULDs. 

A probability density function is non-negative and integrates to one. The lognormal density 
functions, Figures 1 through 8, do not integrate to one. They have been normalized so that 
they can be viewed when superimposed on the histograms. 

3.1 QUANTILES AND PERCENTILES 

The ULDs in the FSAR (FDH 1999b), for the four types of waste, need to be compared to the 
quantiles (SvIL) corresponding to the 95’ and 9g6 percentiles of the lognormal distributions 
based on ULD.Ml. Table 3 lists these quantiles. The quantiles are the ULD.Ml values such 
that 95% or 99% of the “population” is to the left of the value. The quantiles are also given in 
Figures 1 through 8. Table 3 also lists the ULDs for the FSAR (FDH 1999b). Except for the 
9grn percentile for DST solid samples based on DCF ICRP-71, the FSAR ULD is greater than 
the quantile corresponding to the 95’ and the 99* percentiles of the lognormal distribution for 

8 
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each of the four types of waste and DCFs. The 95& and 99* percentiles of the lognormal 
distribution using ULD.M2 and ULD.M3 are given in Table C-3 of Appendix C. 

Table 3. Ouantiles CornDondine to the 95' and 99'' Percentiles of the 

These quantiles should be used with caution. The reason is that the lognormal density 
functions are bases on estimates of the means and variances. These estimates are subject to 
variability, and this variability is 
difficult to compute confidence statements for the quantiles and for the density functions. 
However, tolerance limits are similar to quantiles, and they incorporate the uncertainty due to 
using estimates of the means and variances. Tolerance limits may be more appropriate than 
the quantiles. They are discussed in the next section. 

incorporated into the estimates of the quantiles. It is 

3.2 TOLERANCE LIMITS 

A one-sided tolerance interval is a confidence statement regarding the proportion of the 
population below a given limit. The advantage of using TLs is that a confidence statement is 
part of the TL; Le., measures of uncertainty are in a TL and they are not in the quantiles. 
These limits are based on the normal distribution. The limits are of the form j+K& where 
,& and 6 are the sample mean and standard deviation on the log scale. The values of K are 
tabulated (e.g., Table A-7 in Natrella 1963), they are a function of the number of observations, 
the confidence level, and the proportion. The value exp(,&+K&) is the tolerance limit for the 
lognormal distribution. 

The notation for a 95% TL is 95/P were P is the proportion of the population. The 
interpretation of the tolerance interval is that we are 95% confident that 
population (distribution) is below the limit exp(,&+K&). Table 4 gives the values of K used to 
compute the 95/95 and 95/99 TLs. The TLs (Sv/L) and the ULD for the FSAR (FDH 1999b) 

P% of the 
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are given in Table 5 .  Figures 1 through 8 also plot the TLs and the ULD for the FSAR 
(FDH 1999b) for the specific type of waste. 

Table 4. Values of K' for One-sided 95% Tolerance Limits 

'Natrella (1963), page T-15 
'Estimated using linear interpolation 

Table 5. One-sided 95% Tolerance Limits for the Proportion P=O.95 and P=O.99 
Based on the Lognormal Distribution for ULD.Ml and the FSAR ULD 

The FSAR ULD is greater than the 95/95 TL for all of the waste types except for DST solid 
samples. The FSAR ULD is less than the 95/99 TL except for the ULDs based on SST solid 
samples. The 9Sm and 9gm percentiles and the 95/95 TL and 95/99 TL using ULD.M2 and 
ULD.M3 are given in Table C-3 of Appendix C. 

Figures 3, 4 and 7, 8 are the plots of the lognormal distributions for solid and liquid samples 
for DSTs including the aging waste tanks 241-AY-101, 241-AY-102, 241-AZ101 (liquid 
samples) and 241-AZ-102 . A ULD could not be estimated for solid samples from 241-AZ- 
101. 
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All of the statistical computations and figures were completed using the statistical program 
s-PLUS (S-PLUS 2000). 

4.0 VALIDITY OF ASSUMPTIONS 

To compute a ULD for a tank, there had to be sample data for each of 137Cs, alpha, and *'?3r. 
There were many tanks with sample data from at least one of 137Cs, alpha, or s'rwSr, but the 
data were not used to compute a ULD. In addition, three different models were used to 
incorporate observations below the detection limits. This section reports statistical results that 
compare 137Cs, alpha, and 89'%r tank means based on the available data and the subset of the 
data used to compute the ULD. There is also a statistical comparison of the ULDs computed 
from the three models. 

Tables A-1 through A-12 in Appendix A list the means for 137Cs, alpha, and *"% for each of 
the four waste types, by tank and by the model for observations below the detection limits. 
Since all three of 137Cs, alpha, and "'?3r are needed to compute the ULD for a tank, only a 
subset of the data in these twelve tables was used to compute the four tables in Appendix B. 
For a given analyte and waste type, all of the available data can be compared to the subset used 
to compute the ULD by comparing means, comparing variances, and by comparing 
distributions. 

The computer program S-PLUS (S-PLUS 2000) was used to make the comparisons. The S- 
PLUS function t-test was used to compare the means, the function F-test was used to compare 
the variances, and the two-sample Kolmogorov-Smirnov test function was used to compare the 
distributions. For the two-sample Kolmogorov-Smirnov test, the distribution (e.g., normal, 
lognormal, gamma, etc.) is not specified. It is only specified that the two sets of data have the 
same distribution. 

The results of the statistical comparisons are as follows. For each of the three. radionuclide 
and each of the four waste types, there were no significant differences between the means, 
between the variances, and between the distributions (except in one case). The exceptional 
case is the comparison of the distributions of alpha in SST liquid samples. For this analyte, the 
distribution of alpha obtained by omitting all observations below the DL (model M1) is 
significantly different (0.05 level of significance) from the distribution of alpha obtained by 
replacing all observations below the DL by zero (model M3). The observed means and 
variances are given in Appendix C, Table C-1. 

Figures 9, 10, and 11 are quantile plots of the two sets of data by radionuclide (using model 
M1) and by waste type. The number of points is the number of tanks with data. The x-axis 
represents the quantiles; Le., the ordered values of the data. The y-axis represents the 
percentile points. That is, the point 0.50 corresponds to the median, the point 0.95 the 
quantile for the 95* percentile, etc. As these figures demonstrate, there is little evidence to 
show that the complete data set is different from the subset used in the ULD. The 
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corresponding plots, based on the other two methods for incorporating observations below the 
DL, are similar. 

Three models were used to incorporate observations below the detection limit. In the first 
model, the observations below the detection limits were omitted; in the second, the 
observations below the detection limits were replaced by the detection limit; and in the third 
model, the observations below the detection limits were replace by zero. For each of the four 
waste types, the means, variances and distributions of the ULDs obtained using the three 
modes were compared using S-PLUS. The results of these comparisons were that there were 
no significant differences (0.05 level of significance) between the means, between the 
variances, and between the distributions. The observed ULD means and variances are given in 
Appendix C, Table C-2. 

Table C-3 lists the 95", the 99* percentile points, and the 95/95 and 95/99 tolerance limits for 
the three models. These points are based on the lognormal distribution. For the different 
waste types, there is little difference in the percentile points and the tolerance limits given by 
the three models. 

Based on the results of the statistical comparisons given above, there is no reason to believe 
that the ULDs computed from subsets of the radionuclide data would be different from those 
computed from a complete set of data, provided the complete set were available. In addition, 
the differences in percentile points and tolerance limits using the three models are small. 

12 
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Figure 5. ULD Lognormal Density and Histogram 
Single Shell Tanks, Solid Samples 
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APPENDIX A 

A.0 ANALYTE MEANS TABLES 

In Tables A-1 to A-13, the columns labeled “analyte” denote the type of data used to estimate 
the mean. That is, the symbol 137Cs is used to indicate that the mean of all the 137Cs data for 
the tank is reported. For alpha, GA indicates that the mean of the gross alpha data is reported; 
“‘Am, the mean of the ”‘Am data. For strontium, 89’90Sr indicates that the mean of 89’90Sr is 
reported; %, the mean of 90Sr data; 89FMSr&90Sr, the mean of the combined 89”Sr and 90Sr 
data. The columns labeled M1, M2, and M3 are analyte concentration means when the below 
detection limit observations are omitted, replaced by the detection limit, and replaced by zero 
xespectively. Num.Obs are the total number of observations and Num.Above DL are the 
number of observations above the. detection limit. NA means not available. 

A- I 
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24 1 -U- 101 GA 8 8 1.75E+00 1.75E+00 1.75E+00 
241-U-102 GA 10 10 2.20E+01 2.20E+01 2.2OE+Ol 
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124 1-SY-103 GA 4 0 NA 
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'37cs 

Table A-13. Data from Tanks 241-AZ-101 and 241-AZ-102 

NA NA NA NA 
GA 12 

'TCD: tank charactenzalion database 

12 1 8.16E+01 I8.16E+OlI 8.16E+01 I Preliminary 

'DL: detection limit 
'Combined: combined TCD & preliminary data 
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APPENDIX B 

B.0 UNIT LITER DOSE TABLES 

Tables B-1, B-2, B-3, and B-4 list the ULD (Sv/L) for SST solid samples, SST liquid samples, 
DST solid samples, and DST liquid samples. The columns labeled ULD.Ml, ULD.M2, and 
ULD.M3 are the ULD estimates when the below detection limit observations are omitted, 
replaced by the detection limit, and replaced by zero, respectively. NA means not available. 

Table B1. ULD SST Solid Samples (Sv/L) (2 sheets) 

24 1-AX-104 I 5.91E +04 I 5.9 1E+04 I 5.9 1E+04 I7.87E+04 I 7.87E+W I 7.87E+O4 
241-B-106 ~2.27E+02~2.23E+02~1.76E+02)2.96E+02~2.89E+02)2.17E+02 
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Table El. ULD SST Solid Samples (Sv/L) (2 sheets) 
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241rY-51 18.70=024=+=8.08E+02 1.22E+03 1.17E+03 1.12E+03T 
241-SY-102 3.94E+04 3.94E+04 3.94E+04 6.14E+04 6.14E+04 6.14E+04 
241-SY-103 1.64E+03 1.10E+03 8.72E+02 2.46E+03 1.63E+03 1.27E+03 

Table B-3. ULD DST Solid Samples (Sv/L) 

B-4 
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Table B-4. ULD DST Liquid Samples (Sv/L) 
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APPENDIX C 

C.0 COMPARISON OF ANALYTE AND ULD MEANS AND VARIANCES 

Tables C-1 and C-2 are a comparison of the means and variances of radionuclide activity 
(pCi/g or pCi/L) and the ULDs (Sv/L) for the three models (Ml, M2, and M3) for using 
below detection limit observations. M1, M2, and M3 denote the models. They denote the 
cases when the below detection limit observations are omitted, replaced by the detection limit, 
and replaced by zero, respectively. Num.Tanks are the total number of tanks with a 
radionuclide mean or a ULD. 

In Table C-1, for a given model, the first Num.Tanks value is the total number of tanks with 
an analyte mean. The second Num.Tanks value is the number of tanks with the radionuclide 
mean used in the ULD. For each model, the means and variances (by analyte and waste type) 
are not significantly different from each other. 

In Table C-2, the Num.Tanks denotes the number of tanks with analyte means used to compute 
the ULD based on the three modes for using observations below the detection limit. For each 
waste type, the ULD means and variance for the three models are not significantly different 
from each other. 

Table C-3 lists the quantiles corresponding to the 95& and 99* percentiles points and 95/95 and 
95/99 tolerance limits based on the lognormal distribution for the three models for using 
observations below detection limits. 
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Table C-1. Comparison of Means (pCdg) and Variances (pCi/$) by Radionuclide and 
Waste Type for the Three Models ( M1, M2, and M3) for Detection Limits (2 

c-2 



HNF-4534 Rev. 1 

Table C-1. Comparison of Means (pCdg) and Variances (pCi/gf) by Radionuclide and 
Waste Type for the Three Models ( M1, M2, and M3) for Detection Limits (2 

c-3 
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Table C-1. Comparison of Means (pCig) and Variances (pCil&) by Radionuclide and 
Waste Type for the Three Models ( M1, M2, and M3) for Detection Limits (2 
sheets) 

~ 

15 )6.13E+03) 3.88E+08 I 26 1 f69E+03 ] 634E+08 I 
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Table C-2. Comparison of Means (SvlL) and Variances (Sv/L*) of ULDs by 
Waste Type for the Three Models (Ml, M2, and M3) for 
Detection Limits 

c-5 
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Table C-3. Quantiles (Sv/L) Corresponding to the 9Sh and 9qh Percentiles Points 
and 95/59 and 95/99 Tolerance Limits (SvIL) for the Lognormal 
Distribution for the Three Models for Below Detection L d t  

C-6 
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APPENDIX D 

D.0 S-PLUS FUNCTIONS FOR COMPUTING THE ULD 

Two S-PLUS functions were written to convert pCilg or pCilL to SvlL and to the ULD. The 
functions are called SLD.ULD.fn, and LQD,ULD.fn. The first function is for solid samples, 
and the second is for liquid samples. 

For each type of sample, the means for I3'Cs, GA (gross alpha), and WSr were stored in four 
S-PLUS data frames called SST.SLD.df, SST.LQD.df, DST.SLD.nu.AZ.df, and 
DST.LQD.nu.AZ.df. The first column of each data frame lists the name of the tank. 
Columns 2, 3, and 4 list the means for "?Cs for each of the three models (Ml, M2, and M2) 
for using observations below the detection limit. Likewise, columns 5 ,  6, and 7 list the three 
means for GA, and columns 8, 9, and 10 list the three. means for WSr. These are the means 
reported in Appendix A. 

The two S-PLUS functions use the conversion factors Bq/pCi, glL, and SvlBq given in 
Table 1 to convert pCUg or pCi/L to SvlL for each of 13?Cs, GA, and WSr. Note that there are 
two conversion factors for SvlBq, one based on ICRP-68 and the other on ICRP-71. The Sv/L 
values are stored in columns 11, 12, and 13 for I3?Cs, in columns 14, 15, and 16 for GA, and 
in columns 17, 18, and 19 for %. Note that "Y is included as a multiple of ?3. Columns 
20, 21, and 22 contain the ULD for each of the three models M1, M2, and M2. The ULD is 
the sum of the Sv/L for I3?Cs, GA, and "Sr. The last 16 columns are then named according to 
the units. That is columns 11 to 13 are called "Cs.SvPL.Ml", "Cs.SvPL.M2", 
'Cs.SvPL.M3", columns 14 to 16 are called GA.SvPL.Ml", "GA.SvPL.M2", 
"GA.SvPL.M3", columns 17 to 19 are called SrY.SvPL.Ml", "SrY.SvPL.M2", 
"SrY.SvPL.M3", and columns 20 to 22 are called "ULD.Ml", "ULD.M2", "ULD.M3". 

These two S-PLUS functions generate eight new data frames. The data frames for SSTs are 
called ULD.SST.ICRP68.SLD.df, ULD.SST.ICRWl.SLD.df, ULD.SST.ICRP68.LQD.df, 
and ULD.SST.ICRP71.LQD.df. The data frames for DSTs are ULD.DST.ICRF'68.SLD.df, 
ULD . DST. ICRP7 1. SLD . df, ULD . DST .ICRP68. LQD . df, and ULD .DST.ICRP7 1 .LQD . df. 
The last three columns of each data frame, without most of the missing values, e+, the NA's, 
are the ULD values given in Appendix B. 
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D1.0 THE S-PLUS FUNCTION SLD.ULD.FN 

SLD.ULD. fn = 
function(df1, df2) 

#for SOLID samples, dfl =SST.SLD.df, dQ=DST.SLD.nu.AZ.df 
dfl[, 111 <- dfl[, 21 * (37000) * (1600) * (6.7e-009) 
dfl[, 121 <- dfl[, 31 * (37000) * (1600) * (6.7e-009) 
dfl[, 131 <- dfl[, 41 * (37000) * (1600) * (6.7e-009) 
dfl[, 141 <- dfl[, 51 * (37000) * (1600) * (2.89e-005) 
dfl[, 151 <- dfl[, 61 * (37000) * (1600) * (2.89e-005) 
dfl[, 161 <- dfl[, 71 * (37000) * (1600) * (2.89e-005) 
dfl[, 171 <- dfl[, 81 * (37000) * (1600) * (3e-008 + 1.7e-009) 
dfl[, 181 <- dfl[, 91 * (37000) * (1600) * (3e-008 + 1.7e-009) 
dfl[, 191 <- dfl[, 101 * (37000) * (1600) * (3e-008 + 1.7e-009) 

I 

dfl[, 201 <- dfl[, 111 + dfl[, 141 + dfl[, 17 
dfl[, 211 <- dfl[, 121 + dfl[, 151 + dfl[, 181 
dfl[, 221 <- dfl[, 131 + dfl[, 161 + dfl[, 191 
names(dfl)[ll: 131 < - c("Cs.SvPL.Ml", "Cs.SvPL.M2", "Cs.SvPL.M3") 
names(dfl)[l4: 161 < - c("GA.SvPL.Ml", "GA.SvPL.M2", "GA.SvPL.M3") 
names(dfl)[ 17: 191 < - c("SrY. SvPL.Ml" , "SrY. SvPL.M2", "SrY. SvPL.M3") 
names(df1)[20:22] < - c("ULD.Ml", "ULD.M2", "ULD.M3") 

df2[, 111 <- df2[, 21 * (37000) * (1600) * (6.7e-009) 
df2[, 121 <- df2[, 31 * (37000) * (1600) * (6.7e-009) 
df2[, 131 <- df2[, 41 * (37000) * (1600) * (6.7e-009) 
df2[, 141 <- df2[, 51 * (37000) * (1600) * (2.89e-005) 
df2[, 151 <- df2[, 61 * (37000) * (1600) * (2.89e-005) 
df2[, 161 < - df2[, * (37000) * (1600) * (2.89e-005) 
df2[, 171 <- df2[, 81 * (37000) * (1600) * (3e-008 + 1.7e-009) 
df2[, 181 <- df2[, 91 * (37000) * (1600) * (3e-008 + 1.7e-009) 
df2[, 191 <- df2[, 101 * (37000) * (1600) * (3e-008 + 1.7e-009) 

ULD.SST.ICRP68.SLD.df < <- dfl 

df2[, 201 <- df2[, 111 + df2[, 141 + df2[, 17 
df2[, 211 <- df2[, 121 + df2[, 151 + df2[, 181 
dE[, 221 <- df2[, 131 + dQ[, 161 + df2[, 191 
names(df2)[11: 131 < - c("Cs.SvPL.Ml", "Cs.SvPL.M2", "Cs.SvPL.M3") 
names(df2)[14: 161 < - c("GA.SvPL.Ml", "GA.SvPL.M2", "GA.SvPL.M3") 
names(df2)[17: 191 < - c("SrY .SvPL.Ml", "SrY .SvPL.M2", "SrY .SvPL.M3") 
names(df2)[20:22] <- c("ULD.Ml", "ULD.M2", "ULD.M3") 
ULD.DST.ICRP68.SLD.df < <- df2 
dfl[, 111 <- dfl[, 21 * (37000) * (1600) * (4.k-009) 
dfl[, 121 <- dfl[, 31 * (37000) * (1600) * (4.6e-009) 
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dfl[, 131 <- dfl[, 41 * (37000) * (1600) * (4.k-009) 
dfl[, 141 <- dfl[, 51 * (37000) * (1600) * (4.5e-005) 
dfl[, 151 <- dfl[, 61 * (37000) * (1600) * (4.5e-005) 
dfl[, 161 <- dfl[, 7] * (37000) * (1600) * (4.5e-005) 

dfl[, 181 <- dfl[, 91 * (37000) * (1600) * (3.k-008 + 1.5e-009) 
dfl[, 191 <- dfl[, 101 * (37000) * (1600) * (3.6e-008 + 1.5e-009) 

dfl[, 171 <- dfl[, 81 * (37000) * (1600) * (3.k-008 + 1.5e-009) 

dfl[, 201 <- dfl[, 111 + dfl[, 141 + dfl[, 171 
dfl[, 211 <- dfl[, 121 + dfl[, 151 + dfl[, 181 
dfl[, 221 <- dfl[, 131 + dfl[, 161 + dfl[, 191 
names(dfl)[l1:13] < - c("Cs.SvPL.Ml", "Cs.SvPL.M2", "Cs.SvPL.M3") 
names(dfl)[l4:16] < - c("GA.SvPL.Ml", "GA.SvPL.M2", "GA.SvPL.M3") 
names(dfl)[ 17: 191 < - c("SrY .SvPL.Ml" , "SrY. SvPL.M2", "SrY .SvPL.M3") 
names(df1)[20:22] < - c("ULD.Ml", "ULD.M2", "ULD.M3") 
ULD.SST.ICRP71.SLD.df < <- dfl 
df2[, 111 <- df2[, 21 * (37000) * (1600) * (4.6409) 
df2[, 121 <- df2[, 31 * (37000) * (1600) * (4.k-009) 
df2[, 131 <- do[, 41 * (37000) * (1600) * (4.k-009) 
df2[, 141 <- df2[, 51 * (37000) * (1600) * (4.5e-005) 
df2[, 151 <- dD[, 6] * (37000) * (1600) * (4.5e-005) 
df2[, 161 <- df2[, 71 * (37000) * (1600) * (4.5e-005) 
df2[, 17] <- df2[, 81 * (37000) * (1600) * (3.k-008 + 1.5e-009) 
d e [ ,  181 <- df2[, 91 * (37000) * (1600) * (3.k-008 + 1.5409)  
df2[, 191 <- df2[, 101 * (37000) * (1600) * (3.k-008 + 1.5e-009) 
df2[, 201 <- df2[, 111 + df2[, 141 + df2[, 171 
df2[, 211 <- df2[, 121 + df2[, 151 + df2[, 181 
df2[, 221 <- df2[, 131 + df2[, 161 + df2[, 191 
names(df2)[11: 131 < - c("Cs.SvPL.Ml", "Cs.SvPL.M2", "Cs.SvPL.M3") 
names(df2)[14:16] < - c("GA.SvPL.Ml", "GA.SvPL.M2", "GA.SvPL.M3") 
names(df2)[17:19] < - c("SrY.SvPL.Ml", "SrY.SvPL.M2", "SrY.SvPL.M3") 
names(df2)[20:22] < - c("ULD.Ml 'I, "ULD.M2", "ULD.M3") 
ULD.DST.ICRP71.SLD.df < <- df2 

1 

D2.0 THE S-PLUS FUNCTION LQD.ULDXN 

LQD.ULD. fn = 
function(df1, df2) 

#for LIQUID samples, df l  =SST.LQD.df, df2=DST.LQD.nu.AZ.df 
{ 

dfl[, 111 <- dfl[, 21 * (37000) * (6.7e-009) 
dfl[, 121 <- dfl[, 31 * (37000) * (6.7e-009) 
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dfl[, 131 <- dfl[, 41 * (37000) * (6.7e-009) 
dfl[, 141 <- dfl[, 51 * (37000) * (2.89e-005) 
df1[, 151 <- dfl[, 61 * (37000) * (2.89e-005) 
dfl[, 161 <- dfl[, 7] * (37000) * (2.89e-005) 
dfl[, 171 <- dfl[, 81 * (37000) * (3e-008 + 1.7e-009) 
dfl[, 181 <- dfl[, 91 * (37000) * (38008 + 1.7e-009) 
dfl[, 191 <- dfl[, 101 * (37000) * (3e-008 + 1.7e-009) 
dfl[, 201 <-dfl[ ,  111 + dfl[, 141 + dfl[, 177 
dfl[, 211 <- dfl[, 121 + dfl[, 151 + dfl[, 181 
dfl[, 221 <- dfl[, 131 + dfl[, 161 + dfl[, 191 
names(dfl)[ll:13] < - c("Cs.SvPL.Ml", "Cs.SvPL.M2", "Cs.SvPL.M3") 
names(dfl)[l4: 161 < - c("GA.SvPL.Ml", "GA.SvPL.M2", "GA.SvPL.M3") 
names(dfl)[l7:19] < - c("SrY.SvPL.Ml", "SrY.SvPL.M2", "SrY.SvPL.M3") 
names(df1)[20:22] < - c("ULD.Ml", "ULD.M2", "ULD.M3") 

df2[, 111 <- df2[, 21 * (37000) * (6.7e-009) 
df2[, 121 <- df2[, 31 * (37000) * (6.7e-009) 
df2[, 131 <- dQ[, 41 * (37000) * (6.7e-009) 
dQ[, 141 <- dE[, 51 * (37000) * (2.89e-005) 
df2[, 151 <- df2[, 61 * (37000) * (2.89e-005) 
df2[, 161 <- df2[, 7] * (37000) * (2.89e-005) 
df2[, 17 <- df2[, 81 * (37000) * (3e-008 + 1.7e-009) 
df2[, 181 <- dE[, 91 * (37000) * (3e-008 + 1.7e-009) 
df2[, 191 <- dQ[, 101 * (37000) * (3e-008 + 1.7e-009) 

ULD.SST.ICRP68.LQD.df < <- df l  

df2[, 201 <- de[ ,  111 + df2[, 141 + df2[, 17) 
dD[, 211 <- df2[, 121 + df2[, 151 + df2[, 181 
df2[, 221 <-df2[, 131 + dD[, 161 + df2[, 191 
names(df2)[11:13] < - c("Cs.SvPL.Ml", "Cs.SvPL.M2", "Cs.SvPL.M3") 
names(df2)[14: 161 < - c("GA.SvPL.Ml", "GA.SvPL.M2", "GA.SvPL.M3") 
names(df2)[ 17: 191 < - c("SrY. SvPL.Ml " , "SrY. SvPL.M2", "SrY. SvPL.M3 ") 
names(df2)[20:22] < - c("ULD.Ml", "ULD.M2", "ULD.M3") 

dfl[, 111 <- dfl[, 21 * (37000) * (4.6e-009) 
ULD.DST.ICRP68.LQD.df < <- df2 

dfl[, 121 <- dfl[, 31 * (37000) * (4.6e-009) 
dfl[, 131 <- dfl[, 41 * (37000) * (4.k-009) 
dfl[, 141 <- dfl[, 51 * (37000) * (4.5e-005) 
dfl[, 151 <- dfl[, 61 * (37000) * (4.5e-005) 
dfl[, 161 <- dfl[, 71 * (37000) * (4.5e-005) 
dfl[, 171 <- dfl[, 81 * (37000) * (3.6e-008 + 1.5009)  

dfl[, 191 <- dfl[, 101 * (37000) * (3.6e-008 + 1.5e-009) 
dfl[, 181 <- dfl[, 91 * (37000) * (3.6-008 + 1.5409)  

dfl[, 201 <-dfl[ ,  111 + dfl[, 141 + dfl[, 17) 
dfl[, 211 <- dfl[, 121 + dfl[, 151 + dfl[, 181 
dfl[, 221 <- dfl[, 131 + dfl[, 161 + dfl[, 191 
names(dfl)[ll: 131 < - c("Cs.SvPL.Ml", "Cs.SvPL.M2", "Cs.SvPL.M3") 
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names(dfl)[l4: 161 < - c("GA.SvPL.Ml", "GA.SvPL.M2", "GA.SvPL.M3") 
names(dfl)[l7: 191 < - c("SrY.SvPL.Ml", "SrY.SvPL.M2", "SrY.SvPL.M3") 
names(df 1)[20: 221 < - c( "ULD . M 1 'I, "ULD . M2" , "ULD .M3") 
ULD.SST.ICRP71.LQD.df < <- df l  
df2[, 111 <- dQ[, 21 * (37000) * (4.k-009) 
dQ[, 121 <- df2[, 31 * (37000) * (4.k-009) 
df2[, 131 <- df2[, 41 * (37000) * (4.k-009) 
df2[, 141 < - df2[, 51 * (37000) * (4.5e-005) 
df2[, 151 <- df2[, 61 * (37000) * (4.5e-005) 
df2[, 1q < - df2[, 7] * (37000) * (4.5e-005) 
df2[, 171 <- df2[, 81 * (37000) * (3.6e-008 + 1.5e-009) 

df2[, 191 <- dQ[, 101 * (37000) * (3.6e-008 + 1.5e-009) 
df2[, 181 <- df2[, 91 * (37000) * (3 .6408 + 1.5409)  

dQ[, 201 <- df2[, 111 + df2[, 141 + df2[, 17l 
df2[, 211 <- dQ[, 121 + df2[, 151 + df2[, 181 
df2[, 221 <- df2[, 131 + df2[, 161 + dQ[, 191 
names(df2)[11:13] < - c("Cs.SvPL.Ml", "Cs.SvPL.M2", "Cs.SvPL.M3") 
names(df2)[14:16] < - c("GA.SvPL.MI", "GA.SvPL.M2", "GA.SvPL.M3") 
names(df2)[17: 191 < - c("SrY.SvPL.Ml", "SrY.SvPL.M2", "SrY.SvPL.M3") 
names(df2)[20:22] < - c("ULD.Ml", "ULD.M2", "ULD.M3") 
ULD.DST.ICRP71.LQD.df < <-  dt2 

1 
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APPENDIX E 

E.0 INDEPENDENT REVIEW 
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Safety margins consistent with good engineering practices. 
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