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What can we do with isotopes’?

Tracers of sources and processes (natural and otherwise)
Vadose zone 1nfiltration and seepage rates
Natural versus industrial sources of waters and contaminants

Mineral-fluid reaction rates; fixation and retardation of
contaminants

Connecting vadose zone contamination with groundwater
plumes (Cribs vs. trenches, spills vs. leaks, old vs. recent)

Identifying sources of water as well as sources of contaminants
(process water, Columbia R. water, natural water, evap. Ponds)

Connecting groundwater plumes with Columbia River
contaminants
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Research questions.....

*Are isotopic variations actually diagnostic in real life field
situations?

Can materials be sampled appropriately for isotopic
characterization? Can studies piggy-back on standard
characterization activities?

*Are background effects (natural variations) separable
from contamination or other industrial modifications of the
environment?

*What conceptual and mathematical models are necessary
to properly interpret isotopic data?

*Which elements/isotopes show the most promise?



Topics for this presentation

 Contaminant tracing
— U isotopes, B-BX-BY tanks and groundwater
— N, O isotopes; T-TX tanks and groundwater
— U isotopes in Columbia River
* Vadose zone infiltration
— 8r-U isotope fluxmeter
— Distinctive O-H isotopes in VZ porewater
 Groundwater:

— Sr isotopes, weathering rates, VZ flushing



Single-Shell Tank Farm Construction (1944)

|,
L)
Partiand

" viancouver
.

Hanford Site
indlary .

04/ gklomelers
Vi

v T 11
0 /2 4 8§ dmiles

AGE X014 10




The B-BX-BY Tank Farms, 200 East Area
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o B110 O Estimates for tank leaks (Jones et al. 2001)
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U isotopes in the groundwater plume exactly
match those in the vadose zone under the BX-
102 spill location, and are consistent with the
U isotopes in waste from the B plant at the
time of the spill.

Christensen et al., Env. Sci.& Tech (2004)
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U arrived at the water table 45-
50 years later and 150m to the
northeast from where it was
spilled.

Increased 236/238Yy

* between 2001 & 2003

_ Decreased 236/238y
between 2001 & 2003
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Delivery of the U to groundwater is complex....
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Use of N and O Stable Isotopes for Sources of Nitrate
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Nitrate is involved in the 99Tc¢ Plume Near the T- Tank Farm
\ \
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PTc and Nitrate in C4104
Pore Water (near T-106 m
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In groundwater plume, nitrate is also associated with *Tkc,
nitrate has high 6'>N + low 830 (tank waste signature)
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300 Area plume and U in the Columbia River
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Flux of Contaminant U to the Columbia River
varies seasonally (based on #3¢U)

Fall 2003 Spring 2004
~3 kg/day ~0.5 kg/day
~4% of total river ~0.6% of total river
U flux U flux
~30 kL/min of ~10 kL/min of
contaminated contaminated
groundwater groundwater
0.03% of river flow 0.009% of river flow




Although enhancement to U concentrations are small;
Hanford U can be detected 1n river water
250 km downstream (and traced to 300-Area plume)
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The point is that the Hanford contribution can be precisely measured
(and shown to be minor at present)




Applications of 1sotopes to Hanford hydrology:
Vadose zone fluid fluxes from isotope measurements
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Adding U isotopes removes some ambiguity
and slightly modifies result to ca. 4 mm/yr



Depth (ft)

O and H isotope ratios label VZ water: Water from
surface spills and leaking pipes is identifiable
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Low 87Sr/%6Sr comes from

- reaction w/basalt
(recharge & upwelling)
- Yakima River infiltration

High 37Sr/30Sr from

- reaction w/sediments
- VZ flushing &infiltration
- Columbia R. infiltration



Conclusions

Isotopic field studies are an essential component of
characterization for contaminated watersheds

Major impact on conceptual models

Quantitative estimates of contaminant fluxes and
sources - which (should) impact remediation decisions
and help to define essential basic research issues

Also useful for monitoring natural and engineered
(bio) remediation, and for long-term stewardship

Isotope approaches become more useful as we learn
the capabilities and how to apply them
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